Example #1
0
    def test_point_to_pixel_geometry(self):
        '''Should correctly calculate pixel geometry from center points.'''
        ds = gdal.Open(os.path.join(self.test_dir, 'multi3_raster.tiff'))
        xy_coords = pixel_to_xy([[10, 10], [20, 20]], ds.GetGeoTransform(),
            ds.GetProjection())
        geometries = point_to_pixel_geometry(xy_coords, source_epsg = 32617, target_epsg=4326)

        self.assertTrue(isinstance(geometries[0], ogr.Geometry))
        self.assertEqual(geometries[0].ExportToWkt(), 'POLYGON ((-84.8920166606528 42.4576139546101 0,-84.8916526360905 42.4576263335341 0,-84.8916359196253 42.457356779353 0,-84.8919999426335 42.4573444005452 0,-84.8920166606528 42.4576139546101 0))')
        self.assertEqual(geometries[1].ExportToWkt(), 'POLYGON ((-84.5128222586605 42.1997431501765 0,-84.5124595623182 42.1997542699897 0,-84.5124446081078 42.1994845879707 0,-84.5128073029137 42.1994734682621 0,-84.5128222586605 42.1997431501765 0))')
Example #2
0
    def test_point_to_pixel_geometry(self):
        '''Should correctly calculate pixel geometry from center points.'''
        ds = gdal.Open(os.path.join(self.test_dir, 'multi3_raster.tiff'))
        xy_coords = pixel_to_xy([[10, 10], [20, 20]], ds.GetGeoTransform(),
                                ds.GetProjection())
        geometries = point_to_pixel_geometry(xy_coords,
                                             source_epsg=32617,
                                             target_epsg=4326)

        self.assertTrue(isinstance(geometries[0], ogr.Geometry))
        self.assertEqual(
            geometries[0].ExportToWkt(),
            'POLYGON ((-84.89202 42.45761 0,-84.89165 42.45763 0,-84.89164 42.45736 0,-84.892 42.45734 0,-84.89202 42.45761 0))'
        )
        self.assertEqual(
            geometries[1].ExportToWkt(),
            'POLYGON ((-84.51282 42.19974 0,-84.51246 42.19975 0,-84.51244 42.19948 0,-84.51281 42.19947 0,-84.51282 42.19974 0))'
        )
Example #3
0
    def on_draw(self, output_dir=None):
        def get_data_in_selection(c1, c2):
            condition = np.logical_and(c1, c2).reshape(shp2)
            # Get the X and Y pixel coordinates within the bounding boxes
            cx = ravel_and_filter(np.where(condition, xdata, nodata_array).T,
                                  nodata=self.__nodata__)
            cy = ravel_and_filter(np.where(condition, ydata, nodata_array).T,
                                  nodata=self.__nodata__)

            # Zip the X and Y arrays into an X,Y array
            # NOTE: We flip the Y and X here because the `xdata` are column
            #   indices and `ydata` are row indices, but as pixel coordinates
            #   the row number is a Y-axis cordinate, column number is
            #   an X-axis coordinate
            return np.dstack((cy[:, 0], cx[:, 0]))

        shp = self.features.shape
        shp2 = (shp[0], shp[1], 1)  # Shape for a single band
        # Array of X coordinates
        xdata = np.repeat([np.arange(0, shp[1])], shp[0], axis=0).reshape(shp2)
        # Array of Y coordinates
        ydata = np.repeat([np.arange(0, shp[0])], shp[1],
                          axis=0).T.reshape(shp2)
        nodata_array = np.ones(shp2) * self.__nodata__  # Make NoData array
        tmp = self.features.reshape((shp[0] * shp[1], shp[-1]))

        # Start with top-left, end with bottom-right
        if self.x0 < self.x1:
            if self.y0 > self.y1:
                selection = get_data_in_selection(
                    np.logical_and(tmp[:, 0] > self.x0, tmp[:, 1] < self.y0),
                    np.logical_and(tmp[:, 0] < self.x1, tmp[:, 1] > self.y1))

            # Start with bottom-left, end with top-right
            else:
                selection = get_data_in_selection(
                    np.logical_and(tmp[:, 0] > self.x0, tmp[:, 1] > self.y0),
                    np.logical_and(tmp[:, 0] < self.x1, tmp[:, 1] < self.y1))

        # Start with bottom-right, end with top-left
        else:
            if self.y0 < self.y1:
                selection = get_data_in_selection(
                    np.logical_and(tmp[:, 0] < self.x0, tmp[:, 1] > self.y0),
                    np.logical_and(tmp[:, 0] > self.x1, tmp[:, 1] < self.y1))

            # Start with top-right, end with bottom-left
            else:
                selection = get_data_in_selection(
                    np.logical_and(tmp[:, 0] < self.x0, tmp[:, 1] < self.y0),
                    np.logical_and(tmp[:, 0] > self.x1, tmp[:, 1] > self.y1))

        # Limit to N random features
        if selection.shape[1] >= self.__sel_limit__:
            rfeatures = np.random.choice(np.arange(0, selection.shape[1]),
                                         size=self.__sel_limit__,
                                         replace=False)
            rfeatures.sort(
            )  # Make it easier to get iterate through them in order
            selection = selection[:, rfeatures, :]

        file_path = os.path.join(
            (output_dir or self.__wd__), 'FeatureSpace_selection_%s_%d' %
            ((self.keyword or ''), self.__drawing_index__))
        points = pixel_to_xy(selection[0, :],
                             self.__gt__,
                             self.__wkt__,
                             dd=False)
        points_dd = pixel_to_xy(selection[0, :],
                                self.__gt__,
                                self.__wkt__,
                                dd=True)

        # If a source EPSG is known, convert the output to KML
        if self.epsg is not None:
            # Convert to WGS 84
            poly_geom = point_to_pixel_geometry(points,
                                                source_epsg=self.epsg,
                                                target_epsg=4326)

            # We want to create Placemarks with both a Point and
            #   a Polygon geometry in each
            pmarks = []
            for i, poly in enumerate(poly_geom):
                pm = KML_POLY_TEMPLATE % (
                    ','.join(map(str,
                                 points[i])),  # The (projected) coordinates
                    '<Point><coordinates>%f,%f</coordinates></Point>' %
                    points_dd[i],
                    poly.ExportToKML()  # The KML Polygon feature
                )
                pmarks.append(pm)
            doc = KML_DOC_TEMPLATE % (KML_POLY_STYLE, ''.join(pmarks))
            # Write out the coordinates as a KML file
            with open('%s.kml' % file_path, 'w') as stream:
                stream.write(doc)

            if self.__verbose__:
                sys.stdout.write(
                    "Wrote selection's coordinates in geographic space to: %s.kml\n"
                    % file_path)

        else:
            sys.stdout.write(
                "Warning: Source SRS not known; cannot output KML file\n")