Example #1
0
def normalize(folder):
    x = 0
    y = 0
    for ships in up.unpickle_batch(folder, 50, 4200, 9000):

        #print(np.size(ships))
        #print(ships[0].spect.shape)
        sizes = get_sizes(ships)
        #avg_size = int(np.mean(sizes))
        square_size = np.size(ships[0].spect, 0)
        for i in tqdm(range(len(ships)),
                      "This Batch: ",
                      bar_format="{l_bar}%s{bar}%s{r_bar}" %
                      (Fore.YELLOW, Fore.RESET)):
            try:
                pad_length = (square_size - sizes[i])
                beg_pad, end_pad = calc_pad(square_size, sizes[i])
                if (pad_length >= 0):
                    ships[i].spect = np.pad(ships[i].spect,
                                            [(0, 0), (beg_pad, end_pad)],
                                            mode='constant')
                else:
                    ships[i].spect = ships[i].spect[:,
                                                    abs(beg_pad):sizes[i] +
                                                    end_pad]
                # print(ships[i].spect.shape)
                # print(x)
                x += 1
                up.one_jar(folder, ships[i], False)
            except:
                y += 1
                up.one_jar(folder, ships[i], True)
                tqdm.write(str(y))
                pass
Example #2
0
def generate(rootdir):
    print('here')
    ships = up.unpickle_ships(rootdir)
    i = len(ships)-1
    j = 0
    while i > 0:
        ship = ships[i]
        try:
                wavfilepath = os.path.join(ship.filepath , ship.id + '.wav') #the original wav file
                print(wavfilepath)
                #destination =  destination_folder + ship.month +'\\' + ship.id + '.png' #the destination for the spectrogram
                
                sample_rate, samples = wavfile.read(wavfilepath) #get original wav file samples at the original sample rate
                
                
                frequencies, times, spectrogram = signal.spectrogram(samples,sample_rate, window = np.hanning(1024), noverlap = 0, nfft = 1024, mode='psd') #generate spectrogram 
                uppc = tf.get_tf(ship.harp,frequencies) #get the transfer function results
                
                spectrogram = 10*np.log10(spectrogram) #convert to/from decibels ?
                
                uppc = npmb.repmat(uppc,np.size(spectrogram,1),1) #copy tf results several times to make it same size as spect results
                ship.spect = spectrogram + np.transpose(uppc) #add tf results to spect results
        
        except:
                j+=1
                print("bad ship " + str(j)) 
                print(sys.exc_info()[0])
                up.one_jar(rootdir,ship,True)
                pass
        up.one_jar(rootdir,ship,False)
        ships.pop(i)
        print(i)
        i-=1
Example #3
0
def find_done(folder):
    i = 0
    for ships in up.unpickle_batch(folder, 100, 6500, 9000):
        for ship in ships:
            if ship.spect is None:
                i += 1
                up.one_jar(folder, ship, True)
                tqdm.write(str(i))
                pass
Example #4
0
def all_speeds(folder):
    depths = [0, 100, 200]
    ships = up.unpickle_ships(folder)
    for ship in ships:
        ship.sound_speed = []
        up.one_jar(folder, ship, False)
    for depth in depths:
        ships = up.unpickle_ships(folder)
        new_ships = specific_depth(ships, depth)
        up.store(new_ships, folder)
Example #5
0
def normalize(folder):
    folder = 'D:\PickledData\\'
    ships = up.unpickle_ships(folder)
    sizes = get_sizes(ships)
    max_size = max(sizes)
    for i in range(len(ships)):
        pad_length = max_size - sizes[i]
        ships[i].spect = np.pad(ships[i].spect, [(0, 0), (0, pad_length)],
                                mode='constant')
        print(ships[i].spect.shape)
        print(i)
        up.one_jar(folder, ships[i], False)
Example #6
0
def match_ships(rootdir,csv):
    i=0
    data_frame = get_data(csv)
    for ships in up.unpickle_batch(rootdir,100,9000,9100):
        for ship in ships:
            # if isinstance(ship.sal, int):
            print(ship.id + ': ' + str(i))
            found,sample = find_best_sample(data_frame,ship.cpa_datetime)
            sample = fix_sample(sample)
           
            if found:
                ship.depth = sample.depths
                ship.temp = sample.temps
                ship.sal = sample.sals
                ship.IMO = sample.date
                
                up.one_jar(rootdir,ship,False)
                print('pickled: ' + str(i))
                i+=1
Example #7
0
def all_speeds(folder):
    highest = 0
    lowest = 99999  #temps to check validity of data
    speed_list = []
    for ships in up.unpickle_batch(folder, 100, 0, 9000):
        for ship in ships:
            ship.depth = np.array([float(i) for i in ship.depth])
            ii = np.where(ship.depth == 1)[0]
            if len(ii) > 0:

                index = ii[0]
                depth_400 = float(ship.depth[index])
                temp_400 = float(ship.temp[index])
                sal_400 = float(ship.sal[index])
                # print(depth_400)
                # print(temp_400)
                # print("sal" + str(sal_400))

                ship.sound_speed = calc_speed(
                    depth_400, sal_400,
                    temp_400)  #for this run only cpa refers to sound speed

                s = ship.sound_speed
                if s > highest:
                    highest = s
                if s < lowest:
                    lowest = s
                speed_list.append(s)
            else:
                print(ship.id)

            up.one_jar(folder, ship, False)

    print(highest)
    print(lowest)
    mean, dev = std_dev(speed_list)
    print(mean)
    print(dev)
    u_speeds = np.unique(np.array(speed_list))
    print(u_speeds)
    print(len(u_speeds))
Example #8
0
def main(rootdir,destination):
    i = 0
    mmsis = extract_mmsi('D:\VZDATAALL.csv')
    for ships in up.unpickle_batch(rootdir, 100, 400, 500):
        for ship in ships:
           
            try:
                wavfilepath = ship.filepath + ship.id + '.wav' #the original wav file
                destination =  destination_folder + ship.year_month +'\\' + ship.id + '.wav'
                
                
                
                skip = get_length(ship,mmsis)
                
                converted_times, start_index, cpa_index,cpa_time,normal = convert_time(ship)
                cpa_sog = ship.SOG[cpa_index]
                if (not normal):
                    i+=1
                    print('bad ' + str(i))
                elif skip:
                    i+=1
                    print('mmsi not included ' + str(i))
                else:
                    distances, new_times = new_distances(ship, start_index, converted_times)
                    pre, post = find_ship_passage(ship,distances,new_times,cpa_time,cpa_sog)
                   
                    pass_wav = cut_wav(pre,post,wavfilepath)
                    pass_wav.export(destination,format="wav")
                    
                    print(wavfilepath)
                    pass_wav.export(destination,format="wav")
                    
            
                
            except:
                up.one_jar(rootdir,ship,True)
                print('something went wrong')
                pass
Example #9
0
def generate(folder):
    ships = up.unpickle_ships(folder)
    bad_apples = []
    for ship in ships:
        try:

            wavfilepath = ship.filepath + ship.id + '.wav'  #the original wav file
            txtfilepath = ship.filepath + ship.id + '.txt'  #the original txt file
            destination = destination_folder + ship.year_month + '\\' + ship.id + '.png'  #the destination for the spectrogram
            print(txtfilepath)

            converted_times, start, cpa_index, cpa_time = convert_time(
                ship
            )  #convert all times and find the file start time and cpa time
            #print(start)
            #print(converted_times)
            #print(cpa_time)
            #print(cpa_index)
            after_start = ship.distance[
                start:]  #find all distances after file_time
            # print(len(after_start))
            # print(after_start)
            closest_range = np.min(
                np.abs(after_start))  # find closest point of approach (cpa)
            cpa_index = after_start.index(closest_range)
            # print(cpa_index)
            pre_cpa = after_start[:cpa_index]
            post_cpa = after_start[
                cpa_index:]  #find all distances after cpa time
            # print(len(pre_cpa))

            pre_times = converted_times[:cpa_index]
            # print(len(pre_times))
            post_times = converted_times[cpa_index:]
            # print(post_times)
            #print(pre_cpa)
            #print(post_cpa)
            approach_inter = interpolate.interp1d(pre_times,
                                                  pre_cpa,
                                                  axis=0,
                                                  fill_value="extrapolate")
            depart_inter = interpolate.interp1d(post_times,
                                                post_cpa,
                                                axis=0,
                                                fill_value="extrapolate")

            sample_rate, samples = wavfile.read(
                wavfilepath
            )  #get original wav file samples at the original sample rate

            sound_length = len(samples) // sample_rate
            #print(sound_length)
            approach_times = np.arange(0, cpa_time)
            depart_times = np.arange(cpa_time, sound_length)

            frequencies, times, spectrogram = signal.spectrogram(
                samples,
                sample_rate,
                window=np.hanning(10e3),
                noverlap=0,
                nfft=10e3,
                mode='psd')  #generate spectrogram

            uppc = tf.get_tf(ship.harp,
                             frequencies)  #get the transfer function results
            spectrogram = 10 * np.log10(
                spectrogram)  #convert to/from decibels ?
            uppc = npmb.repmat(
                uppc, np.size(spectrogram, 1), 1
            )  #copy tf results several times to make it same size as spect results
            spectrogram = spectrogram + np.transpose(
                uppc)  #add tf results to spect results

            range_step = .01  # step size of 1m

            range_approach = (
                (np.arange(pre_cpa[0], closest_range, -range_step))
            )  # make a vector of distances between first range and cpa
            range_depart = (
                np.arange(closest_range, post_cpa[len(post_cpa) - 1],
                          range_step)
            )  # make a vector of distances between cpa and last range
            range_desired = np.append(range_approach,
                                      range_depart)  # stick them together
            number_range_samples = len(
                range_desired
            )  # total length is the number of samples we expect.

            #print(spectrogram.shape)

            spect_dis_approach = approach_inter(approach_times)
            spect_dis_depart = depart_inter(depart_times)

            approach_bins = np.digitize(spect_dis_approach, range_approach)

            depart_bins = np.digitize(spect_dis_depart, range_depart)

            approach_spect = range_spect(approach_bins, spectrogram)
            depart_spect = range_spect(depart_bins, spectrogram)
            #print(approach_spect.shape)
            #print(depart_spect.shape)
            #print(spectrogram)
            #print(times)
            #print(times.shape)
            range_spectrogram = np.concatenate((approach_spect, depart_spect),
                                               axis=1)
            ship.spect = range_spectrogram
            normal = True
            #ranges = get_ranges(approach_bins,depart_bins,range_approach,range_depart)
            #print(range_spectrogram)
            #print(ranges)
            #plt.yscale('log') #make y scale log to match the new decibel units
            #axes = plt.gca() #get axes object
            #axes.set_ylim([10,1000]) #set upper limit of data on axes to be 1000
            # plt.pcolormesh(ranges,frequencies,range_spectrogram,vmin=60,vmax=110 ) #plot the data and add color
            # plt.set_cmap('jet')
            # plt.ylabel('Frequency [Hz]')
            # plt.xlabel('Distance [km]')
            # locs, ticks = plt.xticks() #get current time ticks
            # new_ticks = get_ticks(ranges,locs)
            # plt.xticks(locs,new_ticks)

            # plt.colorbar()
            #plt.xticks(locs, new_ticks)  # Set locations and labels to the distance
            #plt.savefig(destination) #save spectrogram at destination
            #plt.imshow(spectrogram)
            #plt.show() #show plot
            #plt.close()
        except:
            print("bad ship")
            up.one_jar(folder, ship, True)
            normal = False
            pass
    # print("bad ships:")
    # print(bad_apples)
    # print(len(bad_apples))
        if normal:
            up.one_jar(folder, ship, False)
Example #10
0
def generate(folder):
    ships = up.unpickle_ships(folder)
    bad_apples = []
    i = 0
    for ship in ships:
        try:
        
            wavfilepath = ship.filepath + ship.id + '.wav' #the original wav file
            txtfilepath = ship.filepath + ship.id + '.txt' #the original txt file
            destination =  destination_folder + ship.year_month +'\\' + ship.id + '.png' #the destination for the spectrogram
            print(txtfilepath)
            
            converted_times,start,cpa_index,cpa_time,normal = convert_time(ship) #convert all times and find the file start time and cpa time
            print(normal)
            after_start = ship.distance[start:] #find all distances after file_time 
            closest_range = np.min(np.abs(after_start)) # find closest point of approach (cpa)
            cpa_index = after_start.index(closest_range)
            if len(after_start) < 20:
                normal = False
                raise NameError('Too Few Distances')
            if normal: #for now only do the ones that are normal
                print('here 1')
                pre_cpa = after_start[:cpa_index]
                pre_times = converted_times[:cpa_index]
                approach_inter = interpolate.interp1d(pre_times,pre_cpa, axis=0, fill_value="extrapolate")
            
            post_cpa = after_start[cpa_index:] #find all distances after cpa time
            post_times = converted_times[cpa_index:]
            depart_inter = interpolate.interp1d(post_times,post_cpa, axis=0, fill_value="extrapolate")
            print('here 2')
            
            sample_rate, samples = wavfile.read(wavfilepath) #get original wav file samples at the original sample rate
            sound_length = len(samples)//sample_rate
           
            frequencies, times, spectrogram = signal.spectrogram(samples,sample_rate, window = np.hanning(10e3), noverlap = 0, nfft = 10e3, mode='psd') #generate spectrogram 
            
            uppc = tf.get_tf(ship.harp,frequencies) #get the transfer function results
            spectrogram = 10*np.log10(spectrogram) #convert to/from decibels ?
            uppc = npmb.repmat(uppc,np.size(spectrogram,1),1) #copy tf results several times to make it same size as spect results
            spectrogram = spectrogram + np.transpose(uppc) #add tf results to spect results

            range_step = .01 # step size of 1m
            if normal:
                approach_times = np.arange(0,cpa_time)
                range_approach = ((np.arange(pre_cpa[0], closest_range, -range_step))) # make a vector of distances between first range and cpa 
                depart_times = np.arange(cpa_time,sound_length)
            else:
                depart_times = np.arange(,sound_length)
            range_depart  = (np.arange(closest_range, post_cpa[len(post_cpa)-1], range_step)) # make a vector of distances between cpa and last range
            #range_desired = np.append(range_approach,range_depart)# stick them together
            #number_range_samples = len(range_desired)# total length is the number of samples we expect. 

            if normal:
                print('here 3')
                spect_dis_approach = approach_inter(approach_times)
                approach_bins = np.digitize(spect_dis_approach,range_approach)
                approach_spect = range_spect(approach_bins,spectrogram)
                
            print('here 4')
            spect_dis_depart = depart_inter(depart_times)
            depart_bins = np.digitize(spect_dis_depart,range_depart)
            
            #depart_bins = depart_bins + last_bin
            depart_spect = range_spect(depart_bins,spectrogram)
            if normal:
                print('here 5')
                range_spectrogram = np.concatenate((approach_spect,depart_spect),axis=1)
            else:
                print('here 6')
                range_spectrogram = depart_spect
            ship.spect = range_spectrogram
            normal = True
            #plt.savefig(destination) #save spectrogram at destination
         
            #plt.close()
        except:
                i+=1
                print("bad ship" + str(i))
                up.one_jar(folder,ship,True)
                normal = False
                pass
        if normal:
                up.one_jar(folder,ship,False)
Example #11
0
        post_cpa = og_wav[cpa_time:(cpa_time + thirty_sec)]

        new_wav = (pre_cpa + post_cpa)

        return new_wav, bad
    else:
        bad = True
        return None, bad


ships = up.unpickle_ships(rootdir)
ships = ships[1500:]

i = 0
for ship in ships:

    try:
        wavfilepath = ship.filepath + ship.id + '.wav'  #the original wav file
        print(wavfilepath)
        destination = destination_folder + ship.year_month + '\\' + ship.id + '.wav'
        result_array, start_index, cpa_index, cpa_time, normal = convert_time(
            ship)
        cpa_wav, bad = extract_cpa(cpa_time, wavfilepath)
        if bad:
            i += 1
            print('bad' + str(i))
        else:
            cpa_wav.export(destination, format="wav")
    except:
        up.one_jar(rootdir, ship, True)
        pass