Example #1
0
def main():
    parser = argparse.ArgumentParser(description='Chainer example: DCGAN')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=50,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=1000,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=-1,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--dataset',
                        '-i',
                        default='',
                        help='Directory of image files.  Default is cifar-10.')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=100,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--snapshot_interval',
                        type=int,
                        default=1000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval',
                        type=int,
                        default=100,
                        help='Interval of displaying log to console')
    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# n_hidden: {}'.format(args.n_hidden))
    print('# epoch: {}'.format(args.epoch))
    print('')

    # Set up a neural network to train
    gen = Generator(n_hidden=args.n_hidden)
    dis = Discriminator()

    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.backends.cuda.get_device_from_id(args.gpu).use()
        gen.to_gpu()  # Copy the model to the GPU
        dis.to_gpu()

    # Setup an optimizer
    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(0.0001),
                           'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    if args.dataset == '':
        # Load the CIFAR10 dataset if args.dataset is not specified
        train, _ = chainer.datasets.get_cifar10(withlabel=False, scale=255.)
    else:
        all_files = os.listdir(args.dataset)
        image_files = [f for f in all_files if ('png' in f or 'jpg' in f)]
        print('{} contains {} image files'.format(args.dataset,
                                                  len(image_files)))
        train = chainer.datasets\
            .ImageDataset(paths=image_files, root=args.dataset)

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    # Set up a trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    snapshot_interval = (args.snapshot_interval, 'iteration')
    display_interval = (args.display_interval, 'iteration')
    trainer.extend(
        extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
        trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        gen, 'gen_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        dis, 'dis_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.LogReport(trigger=display_interval))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'gen/loss',
        'dis/loss',
    ]),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(out_generated_image(gen, dis, 10, 10, args.seed, args.out),
                   trigger=snapshot_interval)

    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run()
Example #2
0
        # optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    # Load the GMM dataset
    dataset, _ = chainer.datasets.get_svhn(withlabel=False, scale=255.)
    train_iter = chainer.iterators.SerialIterator(dataset, batch_size)
    print("# Data size: {}".format(len(dataset)), end="\n\n")

    # Set up a trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=gpu)
    trainer = training.Trainer(updater, (epoch, 'epoch'), out=out)

    snapshot_interval = (5, 'epoch')
    display_interval = (1, 'epoch')
    trainer.extend(extensions.dump_graph("gen/loss", out_name="gen.dot"))
    trainer.extend(extensions.dump_graph("dis/loss", out_name="dis.dot"))
    trainer.extend(
        extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}.npz'),
        trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        gen, 'gen_epoch_{.updater.epoch}.npz'),
                   trigger=snapshot_interval)
Example #3
0
def main():

    config = get_config()

    # general
    general = config['general']
    dataroot = general['dataroot']
    workers = general['workers']
    gpu = general['gpu']
    batch_size = general['batch_size']
    lr = general['lr']
    beta = general['beta']
    epoch = general['epoch']
    image_size = general['image_size']

    # model config
    model_config = config['model']
    nz = model_config['nz']
    ndf = model_config['ndf']
    ngf = model_config['ngf']

    dataset = datasets.ImageFolder(root=dataroot,
                                   transform=transforms.Compose([
                                       transforms.Resize(image_size),
                                       transforms.CenterCrop(image_size),
                                       transforms.ToTensor(),
                                       transforms.Normalize((0.5, 0.5, 0.5),
                                                            (0.5, 0.5, 0.5)),
                                   ]))
    dataloader = data.DataLoader(
        dataset=dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=workers,
    )

    net_D = Discriminator(ndf)
    net_G = Generator(nz, ngf)

    if gpu:
        device = torch.device('cuda')
        net_D = nn.DataParallel(net_D.to(device))
        net_G = nn.DataParallel(net_G.to(device))
    else:
        device = 'cpu'

    def weights_init(m):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            nn.init.normal_(m.weight.data, 0.0, 0.02)
        elif classname.find('BatchNorm') != -1:
            nn.init.normal_(m.weight.data, 1.0, 0.02)
            nn.init.constant_(m.bias.data, 0)

    net_D.apply(weights_init)
    net_G.apply(weights_init)

    optimizers = {
        'Discriminator': optim.Adam(net_D.parameters(),
                                    lr,
                                    betas=(beta, 0.999)),
        'Generator': optim.Adam(net_G.parameters(), lr, betas=(beta, 0.999))
    }
    models = {
        'Discriminator': net_D,
        'Generator': net_G,
    }
    updater = DCGANUpdater(optimizers, models, dataloader, device)
    trainer = Trainer(updater, {'epoch': epoch}, 'test')
    trainer.extend(
        LogReport([
            'iteration',
            'training/D_real',
            'training/D_fake',
            'training/D_loss',
            'training/G_loss',
            'elapsed_time',
        ], {'iteration': 100}))

    trainer.extend(ProgressBar(10))

    save_trigger = MinValueTrigger('training/G_loss',
                                   trigger={'iteration': 100})
    trainer.extend(SnapshotModel(trigger=save_trigger))

    trainer.run()
    print(config)
Example #4
0
def main():
    parser = argparse.ArgumentParser(description='DCGAN')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=64,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=500,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=-1,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--dataset',
                        '-i',
                        default='',
                        help='Directory of image files.')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result image')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--gennum',
                        '-v',
                        default=10,
                        help='visualize image rows and columns number')
    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=100,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--snapshot_interval',
                        type=int,
                        default=1000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval',
                        type=int,
                        default=100,
                        help='Interval of displaying log to console')
    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# n_hidden: {}'.format(args.n_hidden))
    print('# epoch: {}'.format(args.epoch))
    print('')

    #学習モデルの作成
    gen = Generator(n_hidden=args.n_hidden)
    dis = Discriminator()

    if args.gpu >= 0:
        #modelをGPU用に変換
        chainer.cuda.get_device(args.gpu).use()
        gen.to_gpu()
        dis.to_gpu()

    #oputimizerのsetup
    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    if args.dataset == '':
        #データセットの読み込み defaultはcifar10
        train, _ = chainer.datasets.get_cifar10(withlabel=False, scale=255.)
    else:
        all_files = os.listdir(args.dataset)
        image_files = [f for f in all_files if ('png' in f or 'jpg' in f)]
        print('{} contains {} image files'.format(args.dataset,
                                                  len(image_files)))
        train = chainer.datasets\
            .ImageDataset(paths=image_files, root=args.dataset)

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    #trainerのセットアップ
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    snapshot_interval = (args.snapshot_interval, 'iteration')
    display_interval = (args.display_interval, 'iteration')
    trainer.extend(
        extensions.snapshot(filename='snapshot_iter_{.updater.epoch}.npz'),
        trigger=(100, 'epoch'))
    trainer.extend(extensions.snapshot_object(gen,
                                              'gen_iter_{.updater.epoch}.npz'),
                   trigger=(100, 'epoch'))
    trainer.extend(extensions.snapshot_object(dis,
                                              'dis_iter_{.updater.epoch}.npz'),
                   trigger=(100, 'epoch'))
    trainer.extend(extensions.LogReport(trigger=display_interval))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'gen/loss',
        'dis/loss',
    ]),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(out_generated_image(gen, dis, int(args.gennum),
                                       int(args.gennum), args.seed, args.out),
                   trigger=snapshot_interval)

    if args.resume:
        #学習済みmodelの読み込み
        chainer.serializers.load_npz(args.resume, trainer)

    #学習の実行
    trainer.run()
    chainer.serializers.save_npz("genmodel{0}".format(args.datasets), trainer)
def main():
    parser = argparse.ArgumentParser(description='Train GAN')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=64,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=100,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=-1,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--dataset',
                        '-i',
                        default='data/celebA/',
                        help='Directory of image files.')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--snapshot_interval',
                        type=int,
                        default=10000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval',
                        type=int,
                        default=1000,
                        help='Interval of displaying log to console')
    parser.add_argument('--unrolling_steps', type=int, default=0)
    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# batchsize: {}'.format(args.batchsize))
    print('# epoch: {}'.format(args.epoch))
    print('')

    # Set up a neural network to train
    gen = Generator()
    dis = Discriminator(unrolling_steps=args.unrolling_steps)

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        gen.to_gpu()
        dis.to_gpu()

    # Setup an optimizer
    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    # Setup a dataset
    all_files = os.listdir(args.dataset)
    image_files = [f for f in all_files if ('png' in f or 'jpg' in f)]
    print('{} contains {} image files'.format(args.dataset, len(image_files)))
    train = CelebADataset(paths=image_files, root=args.dataset)

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    # Set up a trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    snapshot_interval = (args.snapshot_interval, 'iteration')
    display_interval = (args.display_interval, 'iteration')
    trainer.extend(extensions.snapshot(
        filename='snapshot_gan_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        gen, 'gen_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        dis, 'dis_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(
        extensions.LogReport(trigger=display_interval,
                             log_name='train_gan.log'))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'gen/loss',
        'dis/loss',
    ]),
                   trigger=display_interval)
    trainer.extend(
        extensions.PlotReport(['gen/loss', 'dis/loss'],
                              trigger=display_interval,
                              file_name='gan-loss.png'))
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(out_generated_image(gen, dis, 10, 10, args.seed, args.out),
                   trigger=snapshot_interval)

    if args.resume:
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run()
Example #6
0
def main():
    parser = argparse.ArgumentParser(description='LSGAN')

    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=20,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=1000,
                        help='Number of sweeps over the dataset to train')

    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=-1,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--dataset',
                        '-i',
                        default='',
                        help='Directory of image files.  Default is cifar-10.')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')

    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=100,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--image_size',
                        type=int,
                        default=64,
                        help='Size of output image')

    parser.add_argument('--display_interval',
                        type=int,
                        default=100,
                        help='Interval of displaying log to console (iter)')
    parser.add_argument('--preview_interval',
                        type=int,
                        default=1,
                        help='Interval of preview (epoch)')
    parser.add_argument('--snapshot_interval',
                        type=int,
                        default=10,
                        help='Interval of snapshot (epoch)')

    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# n_hidden: {}'.format(args.n_hidden))
    print('# epoch: {}'.format(args.epoch))
    print('')

    # Set up a neural network to train
    gen = net.Generator(n_hidden=args.n_hidden, image_size=args.image_size)
    # dis = Discriminator()
    dis = net.Discriminator2()
    # dis = net.Discriminator3()

    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.backends.cuda.get_device_from_id(args.gpu).use()
        gen.to_gpu()  # Copy the model to the GPU
        dis.to_gpu()

    # Setup an optimizer
    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    if args.dataset == '':
        # Load the CIFAR10 dataset if args.dataset is not specified
        train, _ = chainer.datasets.get_cifar10(withlabel=False, scale=255.)
    else:
        all_files = os.listdir(args.dataset)
        image_files = [f for f in all_files if ('png' in f or 'jpg' in f)]
        print('{} contains {} image files'.format(args.dataset,
                                                  len(image_files)))
        train = chainer.datasets.ImageDataset(paths=image_files,
                                              root=args.dataset)

    # train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    train_iter = chainer.iterators.MultiprocessIterator(train,
                                                        args.batchsize,
                                                        n_processes=4)

    def resize_converter(batch, device=None, padding=None):
        new_batch = []
        for image in batch:
            C, W, H = image.shape

            if C == 4:
                image = image[:3, :, :]

            if W < H:
                offset = (H - W) // 2
                image = image[:, :, offset:offset + W]
            elif W > H:
                offset = (W - H) // 2
                image = image[:, offset:offset + H, :]

            image = image.transpose(1, 2, 0)
            image = imresize(image, (args.image_size, args.image_size),
                             interp='bilinear')
            image = image.transpose(2, 0, 1)

            image = image / 255.  # 0. ~ 1.

            # Augumentation... Random vertical flip
            if np.random.rand() < 0.5:
                image = image[:, :, ::-1]

            # Augumentation... Tone correction
            mode = np.random.randint(4)
            # mode == 0 -> no correction
            if mode == 1:
                gain = 0.2 * np.random.rand() + 0.9  # 0.9 ~ 1.1
                image = np.power(image, gain)
            elif mode == 2:
                gain = 1.5 * np.random.rand() + 1e-10  # 0 ~ 1.5
                image = np.tanh(gain * (image - 0.5))

                range_min = np.tanh(gain * (-0.5))  # @x=0.5
                range_max = np.tanh(gain * 0.5)  # @x=1.0
                image = (image - range_min) / (range_max - range_min)
            elif mode == 3:
                gain = 2.0 * np.random.rand() + 1e-10  # 0 ~ 1.5
                image = np.sinh(gain * (image - 0.5))

                range_min = np.tanh(gain * (-0.5))  # @x=0.5
                range_max = np.tanh(gain * 0.5)  # @x=1.0
                image = (image - range_min) / (range_max - range_min)

            image = 2. * image - 1.
            new_batch.append(image.astype(np.float32))
        return concat_examples(new_batch, device=device, padding=padding)

    # Set up a trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=args.gpu,
                           converter=resize_converter)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    display_interval = (args.display_interval, 'iteration')
    preview_interval = (args.preview_interval, 'epoch')
    snapshot_interval = (args.snapshot_interval, 'epoch')

    trainer.extend(
        extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
        trigger=snapshot_interval)

    trainer.extend(extensions.snapshot_object(
        gen, 'gen_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        dis, 'dis_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)

    trainer.extend(extensions.LogReport(trigger=display_interval))

    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'gen/loss',
        'dis/loss',
    ]),
                   trigger=display_interval)

    trainer.extend(extensions.ProgressBar(update_interval=10))

    trainer.extend(out_generated_image(gen, dis, 10, 10, args.seed, args.out),
                   trigger=preview_interval)

    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run()
Example #7
0
def main():
    parser = argparse.ArgumentParser(description='Chainer example: DCGAN')
    parser.add_argument('--batchsize', '-b', type=int, default=50,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch', '-e', type=int, default=1000,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--device', '-d', type=str, default='-1',
                        help='Device specifier. Either ChainerX device '
                        'specifier or an integer. If non-negative integer, '
                        'CuPy arrays with specified device id are used. If '
                        'negative integer, NumPy arrays are used')
    parser.add_argument('--dataset', '-i', default='',
                        help='Directory of image files.  Default is cifar-10.')
    parser.add_argument('--out', '-o', default='result',
                        help='Directory to output the result')
    parser.add_argument('--resume', '-r', type=str,
                        help='Resume the training from snapshot')
    parser.add_argument('--n_hidden', '-n', type=int, default=100,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed', type=int, default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--snapshot_interval', type=int, default=10000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval', type=int, default=1000,
                        help='Interval of displaying log to console')
    parser.add_argument('--use-pixelshuffler', action='store_true')
    args = parser.parse_args()

    if chainer.get_dtype() == np.float16:
        warnings.warn(
            'This example may cause NaN in FP16 mode.', RuntimeWarning)

    device = chainer.get_device(args.device)
    device.use()

    print('Device: {}'.format(device))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# n_hidden: {}'.format(args.n_hidden))
    print('# epoch: {}'.format(args.epoch))
    print('')

    # Set up a neural network to train
    gen = Generator(n_hidden=args.n_hidden, use_pixelshuffler=args.use_pixelshuffler)
    dis = Discriminator()

    gen.to_device(device)  # Copy the model to the device
    dis.to_device(device)

    # Setup an optimizer
    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(
            chainer.optimizer_hooks.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    if args.dataset == '':
        # Load the CIFAR10 dataset if args.dataset is not specified
        train, _ = chainer.datasets.get_cifar10(withlabel=False, scale=255.)
    elif args.dataset.endswith('h5'):
        print('parsing as food-101 from kaggle')
        train = h5py.File(args.dataset, 'r')['images'].value.astype(np.float32).transpose(0, 3, 1, 2)
    elif args.dataset.endswith('npy'):
        print('parsing as preprocessed npy')
        train = np.load(args.dataset).astype(np.float32)
    else:
        all_files = os.listdir(args.dataset)
        image_files = [f for f in all_files if ('png' in f or 'jpg' in f)]
        print('{} contains {} image files'
              .format(args.dataset, len(image_files)))
        train = chainer.datasets\
            .ImageDataset(paths=image_files, root=args.dataset)

        train = chainer.datasets.TransformDataset(train, DataAugmentation())

    # Setup an iterator
    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    # Setup an updater
    updater = DCGANUpdater(
        models=(gen, dis),
        iterator=train_iter,
        optimizer={
            'gen': opt_gen, 'dis': opt_dis},
        device=device)

    # Setup a trainer
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    snapshot_interval = (args.snapshot_interval, 'iteration')
    display_interval = (args.display_interval, 'iteration')
    trainer.extend(
        extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
        trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        gen, 'gen_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        dis, 'dis_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    trainer.extend(extensions.LogReport(trigger=display_interval))
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'gen/loss', 'dis/loss',
    ]), trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=1000))
    trainer.extend(
        out_generated_image(
            gen, dis,
            10, 10, args.seed, args.out),
        trigger=snapshot_interval)

    if args.resume is not None:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run()
Example #8
0
def main():
    parser = argparse.ArgumentParser(description='Chainer example: DCGAN')
    parser.add_argument(
        '--batchsize',
        '-b',
        type=int,
        default=50,  # default=50
        help='Number of images in each mini-batch')
    parser.add_argument(
        '--epoch',
        '-e',
        type=int,
        default=10000,  # defalt=500
        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=0,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument(
        '--dataset',
        '-i',
        default='train_illya.txt',  # defalt=''
        help='Directory of image files.  Default is cifar-10.')
    parser.add_argument(
        '--out',
        '-o',
        default='result_anime_illya4',  # defalt='result'
        help='Directory to output the result')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=100,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument(
        '--snapshot_interval',
        type=int,
        default=1000,  # defalt=1000
        help='Interval of snapshot')
    parser.add_argument('--display_interval',
                        type=int,
                        default=100,
                        help='Interval of displaying log to console')
    parser.add_argument(
        '--noise_sigma',
        type=float,
        default=0.2,  # best: 0.2
        help='Std of noise added the descriminator')

    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# n_hidden: {}'.format(args.n_hidden))
    print('# epoch: {}'.format(args.epoch))
    print('')

    # Set up a neural network to train
    gen = Generator(n_hidden=args.n_hidden, wscale=0.02)
    dis = Discriminator(init_sigma=args.noise_sigma, wscale=0.02)

    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(args.gpu).use()
        gen.to_gpu()  # Copy the model to the GPU
        dis.to_gpu()

    # Setup an optimizer
    # https://elix-tech.github.io/ja/2017/02/06/gan.html
    def make_optimizer(model, alpha=0.0002, beta1=0.5):  # 元論文
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer.WeightDecay(0.00001), 'hook_dec')
        return optimizer

    # # For WGAN
    # # Not good
    # def make_optimizer(model, alpha=0.0001, beta1=0.0, beta2=0.9):
    #     optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1, beta2=beta2)
    #     optimizer.setup(model)
    #     return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    if args.dataset == '':
        # Load the CIFAR10 dataset if args.dataset is not specified
        train, _ = cifar.get_cifar10(withlabel=False, scale=255.)
    else:
        resized_paths = resize_data(args.dataset, insize + 16)
        train = PreprocessedDataset(resized_paths, crop_size=insize)
    print('{} contains {} image files'.format(args.dataset, train.__len__()))

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    # Set up a trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=args.gpu)

    # updater = WGANGPUpdater(
    #     models=(gen, dis),
    #     iterator=train_iter,
    #     optimizer={
    #         'gen': opt_gen, 'dis': opt_dis},
    #     device=args.gpu,
    #     l=10,
    #     n_c=5
    # )

    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    snapshot_interval = (args.snapshot_interval, 'iteration')
    display_interval = (args.display_interval, 'iteration')
    trainer.extend(
        extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'),
        trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        gen, 'gen_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(
        dis, 'dis_iter_{.updater.iteration}.npz'),
                   trigger=snapshot_interval)
    trainer.extend(extensions.LogReport(trigger=display_interval))
    trainer.extend(
        extensions.PrintReport([
            'epoch',
            'iteration',
            'gen/loss',
            'dis/loss',
            #'epoch', 'iteration', 'gen/loss', 'dis/loss/gan', 'dis/loss/grad', # For WGAN
        ]),
        trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(out_generated_image(gen, dis, 5, 5, args.seed, args.out),
                   trigger=snapshot_interval)

    # 次第にDescriminatorのノイズを低減させる
    @training.make_extension(trigger=snapshot_interval)
    def shift_sigma(trainer):
        s = dis.shift_sigma(alpha_sigma=0.9)
        print('sigma={}'.format(s))
        print('')

    trainer.extend(shift_sigma)  # 通常のDCGANではコメントイン

    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run()
Example #9
0
def main():
    parser = argparse.ArgumentParser(description='ChainerMN example: DCGAN')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=50,
                        help='Number of images in each mini-batch')
    parser.add_argument('--communicator',
                        type=str,
                        default='hierarchical',
                        help='Type of communicator')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=1000,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu', '-g', action='store_true', help='Use GPU')
    parser.add_argument('--dataset',
                        '-i',
                        default='',
                        help='Directory of image files.  Default is cifar-10.')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result')
    parser.add_argument('--gen_model',
                        '-r',
                        default='',
                        help='Use pre-trained generator for training')
    parser.add_argument('--dis_model',
                        '-d',
                        default='',
                        help='Use pre-trained discriminator for training')
    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=100,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--snapshot_interval',
                        type=int,
                        default=1000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval',
                        type=int,
                        default=100,
                        help='Interval of displaying log to console')
    args = parser.parse_args()

    # Prepare ChainerMN communicator.

    if args.gpu:
        if args.communicator == 'naive':
            print("Error: 'naive' communicator does not support GPU.\n")
            exit(-1)
        comm = chainermn.create_communicator(args.communicator)
        device = comm.intra_rank
    else:
        if args.communicator != 'naive':
            print('Warning: using naive communicator '
                  'because only naive supports CPU-only execution')
        comm = chainermn.create_communicator('naive')
        device = -1

    if comm.mpi_comm.rank == 0:
        print('==========================================')
        print('Num process (COMM_WORLD): {}'.format(MPI.COMM_WORLD.Get_size()))
        if args.gpu:
            print('Using GPUs')
        print('Using {} communicator'.format(args.communicator))
        print('Num hidden unit: {}'.format(args.n_hidden))
        print('Num Minibatch-size: {}'.format(args.batchsize))
        print('Num epoch: {}'.format(args.epoch))
        print('==========================================')

    # Set up a neural network to train
    gen = Generator(n_hidden=args.n_hidden)
    dis = Discriminator()

    if device >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(device).use()
        gen.to_gpu()  # Copy the model to the GPU
        dis.to_gpu()

    # Setup an optimizer
    def make_optimizer(model, comm, alpha=0.0002, beta1=0.5):
        # Create a multi node optimizer from a standard Chainer optimizer.
        optimizer = chainermn.create_multi_node_optimizer(
            chainer.optimizers.Adam(alpha=alpha, beta1=beta1), comm)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen, comm)
    opt_dis = make_optimizer(dis, comm)

    # Split and distribute the dataset. Only worker 0 loads the whole dataset.
    # Datasets of worker 0 are evenly split and distributed to all workers.
    if comm.rank == 0:
        if args.dataset == '':
            # Load the CIFAR10 dataset if args.dataset is not specified
            train, _ = chainer.datasets.get_cifar10(withlabel=False,
                                                    scale=255.)
        else:
            all_files = os.listdir(args.dataset)
            image_files = [f for f in all_files if ('png' in f or 'jpg' in f)]
            print('{} contains {} image files'.format(args.dataset,
                                                      len(image_files)))
            train = chainer.datasets\
                .ImageDataset(paths=image_files, root=args.dataset)
    else:
        train = None

    train = chainermn.scatter_dataset(train, comm)

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    # Set up a trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=device)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    # Some display and output extensions are necessary only for one worker.
    # (Otherwise, there would just be repeated outputs.)
    if comm.rank == 0:
        snapshot_interval = (args.snapshot_interval, 'iteration')
        display_interval = (args.display_interval, 'iteration')
        # Save only model parameters.
        # `snapshot` extension will save all the trainer module's attribute,
        # including `train_iter`.
        # However, `train_iter` depends on scattered dataset, which means that
        # `train_iter` may be different in each process.
        # Here, instead of saving whole trainer module, only the network models
        # are saved.
        trainer.extend(extensions.snapshot_object(
            gen, 'gen_iter_{.updater.iteration}.npz'),
                       trigger=snapshot_interval)
        trainer.extend(extensions.snapshot_object(
            dis, 'dis_iter_{.updater.iteration}.npz'),
                       trigger=snapshot_interval)
        trainer.extend(extensions.LogReport(trigger=display_interval))
        trainer.extend(extensions.PrintReport([
            'epoch',
            'iteration',
            'gen/loss',
            'dis/loss',
            'elapsed_time',
        ]),
                       trigger=display_interval)
        trainer.extend(extensions.ProgressBar(update_interval=10))
        trainer.extend(out_generated_image(gen, dis, 10, 10, args.seed,
                                           args.out),
                       trigger=snapshot_interval)

    # Start the training using pre-trained model, saved by snapshot_object
    if args.gen_model:
        chainer.serializers.load_npz(args.gen_model, gen)
    if args.dis_model:
        chainer.serializers.load_npz(args.dis_model, dis)

    # Run the training
    trainer.run()
Example #10
0
def main():
    parser = argparse.ArgumentParser(description='Chainer: DZGAN MNIST')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=50,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=50,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=0,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result')
    parser.add_argument('--resume',
                        '-r',
                        type=str,
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=100,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--snapshot_interval',
                        type=int,
                        default=1000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval',
                        type=int,
                        default=100,
                        help='Interval of displaying log to console')
    parser.add_argument('--disresume',
                        '-d',
                        type=str,
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--genresume',
                        '-gen',
                        type=str,
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--n_class',
                        '-c',
                        type=int,
                        default=0,
                        help='class num')
    parser.add_argument('--n_sigma',
                        '-s',
                        type=float,
                        default=0,
                        help='sigma param')
    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# n_hidden: {}'.format(args.n_hidden))
    print('# epoch: {}'.format(args.epoch))
    print('')
    #add command temp
    if not os.path.exists(args.out):
        os.makedirs(args.out)
    path = str(args.out) + '/lastcommand.txt'
    with open(path, mode='w') as f:
        f.write(str(args))
    f.close()

    # Set up a neural network to train

    gen = Generator(n_hidden=args.n_hidden, n_class=args.n_class)
    dis = Discriminator()

    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(args.gpu).use()
        gen.to_gpu()  # Copy the model to the GPU
        dis.to_gpu()

    # Setup an optimizer
    def make_optimizer_gen(model, alpha=2e-4, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        #optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    def make_optimizer_dis(model, alpha=2e-4, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        #optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer_gen(gen)
    opt_dis = make_optimizer_dis(dis)

    # Load the MNIST dataset
    train, _ = chainer.datasets.get_mnist(
        withlabel=True, ndim=3, scale=255.)  # ndim=3 : (ch,width,height)

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)
    # Set up a trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=args.gpu,
                           n_hidden=args.n_hidden,
                           n_sigma=args.n_sigma)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    epoch_interval = (1, 'epoch')
    visual_interval = (1, 'epoch')
    snapshot_interval = (args.snapshot_interval, 'iteration')
    display_interval = (args.display_interval, 'iteration')
    # trainer.extend(extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    # trainer.extend(extensions.snapshot_object(gen, 'gen_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    # trainer.extend(extensions.snapshot_object(dis, 'dis_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    trainer.extend(
        extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}.npz'),
        trigger=epoch_interval)
    trainer.extend(extensions.snapshot_object(
        gen, 'gen_epoch_{.updater.epoch}.npz'),
                   trigger=epoch_interval)
    trainer.extend(extensions.snapshot_object(
        dis, 'dis_epoch_{.updater.epoch}.npz'),
                   trigger=epoch_interval)
    trainer.extend(extensions.LogReport(trigger=display_interval))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'gen/loss',
        'dis/loss',
    ]),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(out_generated_image(gen, dis, 10, 20, args.seed, args.out,
                                       args.n_sigma),
                   trigger=visual_interval)
    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    if args.disresume:
        chainer.serializers.load_npz(args.disresume, dis)

    if args.genresume:
        chainer.serializers.load_npz(args.genresume, gen)

    # Run the training
    trainer.run()
Example #11
0
                       shade_lowest=False)
    plot_scatter_real_data(
        chainer.dataset.concat_examples(dataset[:]),
        out,
        radius=args.radius,
    )

    train_iter = chainer.iterators.SerialIterator(dataset, batch_size)

    # Set up a trainer
    if args.discriminator == 2:
        updater = DCGANUpdater(models=(gen, dis),
                               iterator=train_iter,
                               optimizer={
                                   'gen': opt_gen,
                                   'dis': opt_dis
                               },
                               scale=args.radius,
                               device=gpu,
                               lam=args.lam)
    else:
        updater = DCGANUpdater(models=(gen, dis),
                               iterator=train_iter,
                               optimizer={
                                   'gen': opt_gen,
                                   'dis': opt_dis
                               },
                               scale=args.radius,
                               device=gpu)
    trainer = training.Trainer(updater, (epoch, 'epoch'), out=out)
Example #12
0
def main():
    parser = argparse.ArgumentParser(description='Chainer: DCGAN MNIST')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=20,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=100,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=0,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=128,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--snapshot_interval',
                        type=int,
                        default=1000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval',
                        type=int,
                        default=100,
                        help='Interval of displaying log to console')
    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# n_hidden: {}'.format(args.n_hidden))
    print('# epoch: {}'.format(args.epoch))
    print('')

    # Set up a neural network to train
    gen = Generator(n_hidden=args.n_hidden)
    dis = Discriminator()

    if args.gpu >= 0:
        # Make a specified GPU current
        chainer.cuda.get_device_from_id(args.gpu).use()
        gen.to_gpu()  # Copy the model to the GPU
        dis.to_gpu()

    # Setup an optimizer
    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    # Load the MNIST dataset
    train = load_image()

    train_iter = chainer.iterators.SerialIterator(train, args.batchsize)

    # Set up a trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    epoch_interval = (1, 'epoch')
    display_interval = (args.display_interval, 'iteration')
    # trainer.extend(extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    # trainer.extend(extensions.snapshot_object(gen, 'gen_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    # trainer.extend(extensions.snapshot_object(dis, 'dis_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    trainer.extend(
        extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}.npz'),
        trigger=epoch_interval)
    trainer.extend(extensions.snapshot_object(
        gen, 'gen_epoch_{.updater.epoch}.npz'),
                   trigger=epoch_interval)
    trainer.extend(extensions.snapshot_object(
        dis, 'dis_epoch_{.updater.epoch}.npz'),
                   trigger=epoch_interval)
    trainer.extend(extensions.LogReport(trigger=display_interval))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'gen/loss',
        'dis/loss',
    ]),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(out_generated_image(gen, dis, 10, 10, args.seed, args.out),
                   trigger=epoch_interval)

    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run()
Example #13
0
def main():
    import numpy as np
    import argparse

    # パーサーを作る
    parser = argparse.ArgumentParser(
        prog='train',  # プログラム名
        usage='train DCGAN to dish',  # プログラムの利用方法
        description='description',  # 引数のヘルプの前に表示
        epilog='end',  # 引数のヘルプの後で表示
        add_help=True,  # -h/–help オプションの追加
    )

    # 引数の追加
    parser.add_argument('-s', '--seed', help='seed', type=int, required=True)
    parser.add_argument('-n',
                        '--number',
                        help='the number of experiments.',
                        type=int,
                        required=True)
    parser.add_argument('--hidden',
                        help='the number of codes of Generator.',
                        type=int,
                        default=100)
    parser.add_argument('-e',
                        '--epoch',
                        help='the number of epoch, defalut value is 300',
                        type=int,
                        default=300)
    parser.add_argument('-bs',
                        '--batch_size',
                        help='batch size. defalut value is 128',
                        type=int,
                        default=128)
    parser.add_argument('-g',
                        '--gpu',
                        help='specify gpu by this number. defalut value is 0',
                        choices=[0, 1],
                        type=int,
                        default=0)
    parser.add_argument(
        '-ks',
        '--ksize',
        help='specify ksize of generator by this number. any of following;'
        ' 4 or 6. defalut value is 6',
        choices=[4, 6],
        type=int,
        default=6)
    parser.add_argument(
        '-dis',
        '--discriminator',
        help='specify discriminator by this number. any of following;'
        ' 0: original, 1: minibatch discriminatio, 2: feature matching, 3: GAP. defalut value is 3',
        choices=[0, 1, 2, 3],
        type=int,
        default=3)
    parser.add_argument(
        '-ts',
        '--tensor_shape',
        help=
        'specify Tensor shape by this numbers. first args denotes to B, seconds to C.'
        ' defalut value are B:32, C:8',
        type=int,
        default=[32, 8],
        nargs=2)
    parser.add_argument('-V',
                        '--version',
                        version='%(prog)s 1.0.0',
                        action='version',
                        default=False)

    # 引数を解析する
    args = parser.parse_args()

    gpu = args.gpu
    batch_size = args.batch_size
    n_hidden = args.hidden
    epoch = args.epoch
    seed = args.seed
    number = args.number  # number of experiments
    if args.ksize == 6:
        pad = 2
    else:
        pad = 1

    out = pathlib.Path("result_{0}".format(number))
    if not out.exists():
        out.mkdir()
    out /= pathlib.Path("result_{0}_{1}".format(number, seed))
    if not out.exists():
        out.mkdir()

    # 引数(ハイパーパラメータの設定)の書き出し
    with open(out / "args.txt", "w") as f:
        f.write(str(args))

    print('GPU: {}'.format(gpu))
    print('# Minibatch-size: {}'.format(batch_size))
    print('# n_hidden: {}'.format(n_hidden))
    print('# epoch: {}'.format(epoch))
    print('# out: {}'.format(out))
    print('# seed: {}'.format(seed))
    print('# ksize: {}'.format(args.ksize))
    print('# pad: {}'.format(pad))

    # fix seed
    np.random.seed(seed)
    if chainer.backends.cuda.available:
        chainer.backends.cuda.cupy.random.seed(seed)

    # import discrimination & set up
    # if args.discriminator == 0:
    #     print("# Original Discriminator")
    #     from discriminator import Discriminator
    #     from updater import DCGANUpdater
    #     dis = Discriminator()
    if args.discriminator == 1:
        print("# Discriminator applied Minibatch Discrimination")
        print('# Tensor shape is A x {0} x {1}'.format(args.tensor_shape[0],
                                                       args.tensor_shape[1]))
        from discriminator_md import Discriminator
        from updater import DCGANUpdater
        dis = Discriminator(B=args.tensor_shape[0], C=args.tensor_shape[1])
    elif args.discriminator == 3:
        print("# Discriminator applied GAP")
        from discriminator import Discriminator
        from updater import DCGANUpdater
        dis = Discriminator()
    """
    elif args.discriminator == 2:
        print("# Discriminator applied matching")
        from discriminator_fm import Discriminator
        from updater_fm import DCGANUpdater
    """
    print('')
    # Set up a neural network to train
    gen = Generator(n_hidden=n_hidden, ksize=args.ksize, pad=pad)

    if gpu >= 0:
        # Make a specified GPU current
        chainer.backends.cuda.get_device_from_id(gpu).use()
        gen.to_gpu()  # Copy the model to the GPU
        dis.to_gpu()

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    # Prepare Dataset
    """
    paths = ["rsize_data_128", "test_rsize_data_128",
             "unlabeled_rsize_data_128"]  # resize data 128
    """
    paths = ["center_crop_data_128"]  # center ctop data
    data_path = []
    for path in paths:
        data_dir = pathlib.Path(path)
        abs_data_dir = data_dir.resolve()
        print("data dir path:", abs_data_dir)
        data_path += [path for path in abs_data_dir.glob("*.jpg")]
    print("data length:", len(data_path))
    data = ImageDataset(paths=data_path)  # dtype=np.float32
    train_iter = chainer.iterators.SerialIterator(data, batch_size)

    # Set up a updater and trainer
    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=gpu)
    trainer = training.Trainer(updater, (epoch, 'epoch'), out=out)

    snapshot_interval = (10, 'epoch')
    display_interval = (1, 'epoch')
    # storage method is hdf5
    trainer.extend(extensions.snapshot(
        filename='snapshot_epoch_{.updater.epoch}.npz', savefun=save_npz),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(gen,
                                              'gen_epoch_{.updater.epoch}.npz',
                                              savefun=save_npz),
                   trigger=snapshot_interval)
    trainer.extend(extensions.snapshot_object(dis,
                                              'dis_epoch_{.updater.epoch}.npz',
                                              savefun=save_npz),
                   trigger=snapshot_interval)
    trainer.extend(extensions.LogReport())
    trainer.extend(extensions.PrintReport([
        'epoch', 'iteration', 'gen/loss', 'dis/loss', 'elapsed_time',
        'dis/accuracy'
    ]),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=20))
    trainer.extend(out_generated_image(gen, dis, 5, 5, seed, out),
                   trigger=display_interval)
    trainer.extend(
        extensions.PlotReport(['gen/loss', 'dis/loss'],
                              x_key='epoch',
                              file_name='loss_{0}_{1}.jpg'.format(
                                  number, seed),
                              grid=False))
    trainer.extend(extensions.dump_graph("gen/loss", out_name="gen.dot"))
    trainer.extend(extensions.dump_graph("dis/loss", out_name="dis.dot"))

    # Run the training
    trainer.run()
Example #14
0
def main():
    parser = argparse.ArgumentParser(description='Chainer: DCGAN MNIST')
    parser.add_argument('--batchsize',
                        '-b',
                        type=int,
                        default=50,
                        help='Number of images in each mini-batch')
    parser.add_argument('--epoch',
                        '-e',
                        type=int,
                        default=1000,
                        help='Number of sweeps over the dataset to train')
    parser.add_argument('--gpu',
                        '-g',
                        type=int,
                        default=0,
                        help='GPU ID (negative value indicates CPU)')
    parser.add_argument('--out',
                        '-o',
                        default='result',
                        help='Directory to output the result')
    parser.add_argument('--resume',
                        '-r',
                        default='',
                        help='Resume the training from snapshot')
    parser.add_argument('--n_hidden',
                        '-n',
                        type=int,
                        default=100,
                        help='Number of hidden units (z)')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed of z at visualization stage')
    parser.add_argument('--snapshot_interval',
                        type=int,
                        default=1000,
                        help='Interval of snapshot')
    parser.add_argument('--display_interval',
                        type=int,
                        default=100,
                        help='Interval of displaying log to console')
    parser.add_argument('--image_dir',
                        default='./img',
                        help='Training image directory')

    args = parser.parse_args()

    print('GPU: {}'.format(args.gpu))
    print('# Minibatch-size: {}'.format(args.batchsize))
    print('# n_hidden: {}'.format(args.n_hidden))
    print('# epoch: {}'.format(args.epoch))
    print('')

    gen = Generator()
    dis = Discriminator()

    if args.gpu >= 0:
        chainer.cuda.get_device_from_id(args.gpu).use()
        gen.to_gpu()
        dis.to_gpu()

    def make_optimizer(model, alpha=0.0002, beta1=0.5):
        optimizer = chainer.optimizers.Adam(alpha=alpha, beta1=beta1)
        optimizer.setup(model)
        optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001), 'hook_dec')
        return optimizer

    opt_gen = make_optimizer(gen)
    opt_dis = make_optimizer(dis)

    def read_dataset(image_dir):
        fs = os.listdir(image_dir)
        dataset = []
        for fn in fs:
            img = Image.open(f"{args.image_dir}/{fn}").convert('RGB')
            dataset.append((np.asarray(img,
                                       dtype=np.float32).transpose(2, 0, 1)))
        return dataset

    dataset = read_dataset(args.image_dir)
    train_iter = chainer.iterators.SerialIterator(dataset,
                                                  args.batchsize,
                                                  repeat=True,
                                                  shuffle=True)

    updater = DCGANUpdater(models=(gen, dis),
                           iterator=train_iter,
                           optimizer={
                               'gen': opt_gen,
                               'dis': opt_dis
                           },
                           device=args.gpu)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)

    epoch_interval = (1, 'epoch')
    # snapshot_interval = (args.snapshot_interval, 'iteration')
    display_interval = (args.display_interval, 'iteration')
    # trainer.extend(extensions.snapshot(filename='snapshot_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    # trainer.extend(extensions.snapshot_object(gen, 'gen_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    # trainer.extend(extensions.snapshot_object(dis, 'dis_iter_{.updater.iteration}.npz'), trigger=snapshot_interval)
    trainer.extend(
        extensions.snapshot(filename='snapshot_epoch_{.updater.epoch}.npz'),
        trigger=epoch_interval)
    trainer.extend(extensions.snapshot_object(
        gen, 'gen_epoch_{.updater.epoch}.npz'),
                   trigger=epoch_interval)
    trainer.extend(extensions.snapshot_object(
        dis, 'dis_epoch_{.updater.epoch}.npz'),
                   trigger=epoch_interval)
    trainer.extend(extensions.LogReport(trigger=display_interval))
    trainer.extend(extensions.PrintReport([
        'epoch',
        'iteration',
        'gen/loss',
        'dis/loss',
    ]),
                   trigger=display_interval)
    trainer.extend(extensions.ProgressBar(update_interval=10))
    trainer.extend(out_generated_image(gen, dis, 10, 10, args.seed, args.out),
                   trigger=epoch_interval)

    if args.resume:
        # Resume from a snapshot
        chainer.serializers.load_npz(args.resume, trainer)

    # Run the training
    trainer.run()