Example #1
0
def check_iris(presort, subsample, sample_weight):
    # Check consistency on dataset iris.
    clf = GradientBoostingClassifier(n_estimators=100,
                                     loss='deviance',
                                     random_state=1,
                                     subsample=subsample,
                                     presort=presort)
    clf.fit(iris.data, iris.target, sample_weight=sample_weight)
    score = clf.score(iris.data, iris.target)
    assert_greater(score, 0.9)

    leaves = clf.apply(iris.data)
    assert_equal(leaves.shape, (150, 100, 3))
Example #2
0
def check_max_leaf_nodes_max_depth(name):
    X, y = hastie_X, hastie_y

    # Test precedence of max_leaf_nodes over max_depth.
    ForestEstimator = FOREST_ESTIMATORS[name]
    est = ForestEstimator(max_depth=1,
                          max_leaf_nodes=4,
                          n_estimators=1,
                          random_state=0).fit(X, y)
    assert_greater(est.estimators_[0].tree_.max_depth, 1)

    est = ForestEstimator(max_depth=1, n_estimators=1,
                          random_state=0).fit(X, y)
    assert_equal(est.estimators_[0].tree_.max_depth, 1)
Example #3
0
def test_max_leaf_nodes_max_depth():
    # Test precedence of max_leaf_nodes over max_depth.
    X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    all_estimators = [GradientBoostingRegressor, GradientBoostingClassifier]

    k = 4
    for GBEstimator in all_estimators:
        est = GBEstimator(max_depth=1, max_leaf_nodes=k).fit(X, y)
        tree = est.estimators_[0, 0].tree_
        assert_greater(tree.max_depth, 1)

        est = GBEstimator(max_depth=1).fit(X, y)
        tree = est.estimators_[0, 0].tree_
        assert_equal(tree.max_depth, 1)
Example #4
0
def check_boston_criterion(name, criterion):
    # Check consistency on dataset boston house prices.
    ForestRegressor = FOREST_REGRESSORS[name]

    clf = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1)
    clf.fit(boston.data, boston.target)
    score = clf.score(boston.data, boston.target)
    assert_greater(
        score, 0.95, "Failed with max_features=None, criterion %s "
        "and score = %f" % (criterion, score))

    clf = ForestRegressor(n_estimators=5,
                          criterion=criterion,
                          max_features=6,
                          random_state=1)
    clf.fit(boston.data, boston.target)
    score = clf.score(boston.data, boston.target)
    assert_greater(
        score, 0.95, "Failed with max_features=6, criterion %s "
        "and score = %f" % (criterion, score))
Example #5
0
def test_randomized_svd_power_iteration_normalizer():
    # randomized_svd with power_iteration_normalized='none' diverges for
    # large number of power iterations on this dataset
    rng = np.random.RandomState(42)
    X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng)
    X += 3 * rng.randint(0, 2, size=X.shape)
    n_components = 50

    # Check that it diverges with many (non-normalized) power iterations
    U, s, V = randomized_svd(X,
                             n_components,
                             n_iter=2,
                             power_iteration_normalizer='none')
    A = X - U.dot(np.diag(s).dot(V))
    error_2 = linalg.norm(A, ord='fro')
    U, s, V = randomized_svd(X,
                             n_components,
                             n_iter=20,
                             power_iteration_normalizer='none')
    A = X - U.dot(np.diag(s).dot(V))
    error_20 = linalg.norm(A, ord='fro')
    assert_greater(np.abs(error_2 - error_20), 100)

    for normalizer in ['LU', 'QR', 'auto']:
        U, s, V = randomized_svd(X,
                                 n_components,
                                 n_iter=2,
                                 power_iteration_normalizer=normalizer,
                                 random_state=0)
        A = X - U.dot(np.diag(s).dot(V))
        error_2 = linalg.norm(A, ord='fro')

        for i in [5, 10, 50]:
            U, s, V = randomized_svd(X,
                                     n_components,
                                     n_iter=i,
                                     power_iteration_normalizer=normalizer,
                                     random_state=0)
            A = X - U.dot(np.diag(s).dot(V))
            error = linalg.norm(A, ord='fro')
            assert_greater(15, np.abs(error_2 - error))
Example #6
0
def test_randomized_svd_low_rank_with_noise():
    # Check that extmath.randomized_svd can handle noisy matrices
    n_samples = 100
    n_features = 500
    rank = 5
    k = 10

    # generate a matrix X wity structure approximate rank `rank` and an
    # important noisy component
    X = make_low_rank_matrix(n_samples=n_samples,
                             n_features=n_features,
                             effective_rank=rank,
                             tail_strength=0.1,
                             random_state=0)
    assert_equal(X.shape, (n_samples, n_features))

    # compute the singular values of X using the slow exact method
    _, s, _ = linalg.svd(X, full_matrices=False)

    for normalizer in ['auto', 'none', 'LU', 'QR']:
        # compute the singular values of X using the fast approximate
        # method without the iterated power method
        _, sa, _ = randomized_svd(X,
                                  k,
                                  n_iter=0,
                                  power_iteration_normalizer=normalizer,
                                  random_state=0)

        # the approximation does not tolerate the noise:
        assert_greater(np.abs(s[:k] - sa).max(), 0.01)

        # compute the singular values of X using the fast approximate
        # method with iterated power method
        _, sap, _ = randomized_svd(X,
                                   k,
                                   power_iteration_normalizer=normalizer,
                                   random_state=0)

        # the iterated power method is helping getting rid of the noise:
        assert_almost_equal(s[:k], sap, decimal=3)
Example #7
0
def check_iris_criterion(name, criterion):
    # Check consistency on dataset iris.
    ForestClassifier = FOREST_CLASSIFIERS[name]

    clf = ForestClassifier(n_estimators=10,
                           criterion=criterion,
                           random_state=1)
    clf.fit(iris.data, iris.target)
    score = clf.score(iris.data, iris.target)
    assert_greater(
        score, 0.9,
        "Failed with criterion %s and score = %f" % (criterion, score))

    clf = ForestClassifier(n_estimators=10,
                           criterion=criterion,
                           max_features=2,
                           random_state=1)
    clf.fit(iris.data, iris.target)
    score = clf.score(iris.data, iris.target)
    assert_greater(
        score, 0.5,
        "Failed with criterion %s and score = %f" % (criterion, score))
Example #8
0
def test_randomized_svd_infinite_rank():
    # Check that extmath.randomized_svd can handle noisy matrices
    n_samples = 100
    n_features = 500
    rank = 5
    k = 10

    # let us try again without 'low_rank component': just regularly but slowly
    # decreasing singular values: the rank of the data matrix is infinite
    X = make_low_rank_matrix(n_samples=n_samples,
                             n_features=n_features,
                             effective_rank=rank,
                             tail_strength=1.0,
                             random_state=0)
    assert_equal(X.shape, (n_samples, n_features))

    # compute the singular values of X using the slow exact method
    _, s, _ = linalg.svd(X, full_matrices=False)
    for normalizer in ['auto', 'none', 'LU', 'QR']:
        # compute the singular values of X using the fast approximate method
        # without the iterated power method
        _, sa, _ = randomized_svd(X,
                                  k,
                                  n_iter=0,
                                  power_iteration_normalizer=normalizer)

        # the approximation does not tolerate the noise:
        assert_greater(np.abs(s[:k] - sa).max(), 0.1)

        # compute the singular values of X using the fast approximate method
        # with iterated power method
        _, sap, _ = randomized_svd(X,
                                   k,
                                   n_iter=5,
                                   power_iteration_normalizer=normalizer)

        # the iterated power method is still managing to get most of the
        # structure at the requested rank
        assert_almost_equal(s[:k], sap, decimal=3)
Example #9
0
def test_zero_estimator_clf():
    # Test if ZeroEstimator works for classification.
    X = iris.data
    y = np.array(iris.target)
    est = GradientBoostingClassifier(n_estimators=20,
                                     max_depth=1,
                                     random_state=1,
                                     init=ZeroEstimator())
    est.fit(X, y)

    assert_greater(est.score(X, y), 0.96)

    est = GradientBoostingClassifier(n_estimators=20,
                                     max_depth=1,
                                     random_state=1,
                                     init='zero')
    est.fit(X, y)

    assert_greater(est.score(X, y), 0.96)

    # binary clf
    mask = y != 0
    y[mask] = 1
    y[~mask] = 0
    est = GradientBoostingClassifier(n_estimators=20,
                                     max_depth=1,
                                     random_state=1,
                                     init='zero')
    est.fit(X, y)
    assert_greater(est.score(X, y), 0.96)

    est = GradientBoostingClassifier(n_estimators=20,
                                     max_depth=1,
                                     random_state=1,
                                     init='foobar')
    assert_raises(ValueError, est.fit, X, y)
Example #10
0
def test_incremental_variance_numerical_stability():
    # Test Youngs and Cramer incremental variance formulas.

    def np_var(A):
        return A.var(axis=0)

    # Naive one pass variance computation - not numerically stable
    # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
    def one_pass_var(X):
        n = X.shape[0]
        exp_x2 = (X**2).sum(axis=0) / n
        expx_2 = (X.sum(axis=0) / n)**2
        return exp_x2 - expx_2

    # Two-pass algorithm, stable.
    # We use it as a benchmark. It is not an online algorithm
    # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm
    def two_pass_var(X):
        mean = X.mean(axis=0)
        Y = X.copy()
        return np.mean((Y - mean)**2, axis=0)

    # Naive online implementation
    # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm
    # This works only for chunks for size 1
    def naive_mean_variance_update(x, last_mean, last_variance,
                                   last_sample_count):
        updated_sample_count = (last_sample_count + 1)
        samples_ratio = last_sample_count / float(updated_sample_count)
        updated_mean = x / updated_sample_count + last_mean * samples_ratio
        updated_variance = last_variance * samples_ratio + \
            (x - last_mean) * (x - updated_mean) / updated_sample_count
        return updated_mean, updated_variance, updated_sample_count

    # We want to show a case when one_pass_var has error > 1e-3 while
    # _batch_mean_variance_update has less.
    tol = 200
    n_features = 2
    n_samples = 10000
    x1 = np.array(1e8, dtype=np.float64)
    x2 = np.log(1e-5, dtype=np.float64)
    A0 = x1 * np.ones((n_samples // 2, n_features), dtype=np.float64)
    A1 = x2 * np.ones((n_samples // 2, n_features), dtype=np.float64)
    A = np.vstack((A0, A1))

    # Older versions of numpy have different precision
    # In some old version, np.var is not stable
    if np.abs(np_var(A) - two_pass_var(A)).max() < 1e-6:
        stable_var = np_var
    else:
        stable_var = two_pass_var

    # Naive one pass var: >tol (=1063)
    assert_greater(np.abs(stable_var(A) - one_pass_var(A)).max(), tol)

    # Starting point for online algorithms: after A0

    # Naive implementation: >tol (436)
    mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2
    for i in range(A1.shape[0]):
        mean, var, n = \
            naive_mean_variance_update(A1[i, :], mean, var, n)
    assert_equal(n, A.shape[0])
    # the mean is also slightly unstable
    assert_greater(np.abs(A.mean(axis=0) - mean).max(), 1e-6)
    assert_greater(np.abs(stable_var(A) - var).max(), tol)

    # Robust implementation: <tol (177)
    mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2
    for i in range(A1.shape[0]):
        mean, var, n = \
            _incremental_mean_and_var(A1[i, :].reshape((1, A1.shape[1])),
                                      mean, var, n)
    assert_equal(n, A.shape[0])
    assert_array_almost_equal(A.mean(axis=0), mean)
    assert_greater(tol, np.abs(stable_var(A) - var).max())