Example #1
0
    def test_moving_params(self):
        digits = datasets.load_digits()
        digits_data = digits.data
        digits_target = digits.target

        p = Pipeline()

        node_data = p.add(NumpyRead(digits_data))
        node_target = p.add(NumpyRead(digits_target))
        node_split = p.add(SplitTrainTest(2, random_state=0))
        # parameters from
        # http://scikit-learn.org/stable/auto_examples/plot_classifier_comparison.html
        node_clf1 = p.add(
            wrap_and_make_instance(RandomForestClassifier,
                                   max_depth=5,
                                   n_estimators=10,
                                   max_features=1,
                                   random_state=0))
        node_clf2 = p.add(
            wrap_and_make_instance(RandomForestClassifier,
                                   max_depth=12,
                                   n_estimators=100,
                                   max_features=1000))
        node_params_out_1 = p.add(
            CSVWrite(self._tmp_files.get('out_params_1.csv')))
        node_params_out_2 = p.add(
            CSVWrite(self._tmp_files.get('out_params_2.csv')))
        node_pred_out_1 = p.add(CSVWrite(
            self._tmp_files.get('out_pred_1.csv')))
        node_pred_out_2 = p.add(CSVWrite(
            self._tmp_files.get('out_pred_2.csv')))

        node_data['output'] > node_split['input0']
        node_target['output'] > node_split['input1']

        node_split['train0'] > node_clf1['X_train']
        node_split['train1'] > node_clf1['y_train']
        node_split['test0'] > node_clf1['X_test']

        node_split['train0'] > node_clf2['X_train']
        node_split['train1'] > node_clf2['y_train']
        node_split['test0'] > node_clf2['X_test']

        node_clf1['params_out'] > node_clf2['params_in']

        node_clf1['params_out'] > node_params_out_1['input']
        node_clf2['params_out'] > node_params_out_2['input']

        node_clf1['y_pred'] > node_pred_out_1['input']
        node_clf2['y_pred'] > node_pred_out_2['input']

        self.run_pipeline(p)

        params_1 = self._tmp_files.csv_read('out_params_1.csv')
        params_2 = self._tmp_files.csv_read('out_params_2.csv')
        self.assertTrue(np.array_equal(params_1, params_2))

        y_pred_1 = self._tmp_files.csv_read('out_pred_1.csv')
        y_pred_2 = self._tmp_files.csv_read('out_pred_2.csv')
        self.assertTrue(np.array_equal(y_pred_1, y_pred_2))
Example #2
0
    def test_query_complex(self):

        p = Pipeline()

        csv_in = p.add(CSVRead(path_of_data('query.csv')))
        q1_node = p.add(
            Query("((id == value) and not (use_this_col == 'no'))"
                  "or name == 'fish'"))
        csv_out = p.add(CSVWrite(self._tmp_files('out.csv')))
        csv_comp = p.add(CSVWrite(self._tmp_files('out_comp.csv')))

        csv_in['output'] > q1_node['input']
        q1_node['output'] > csv_out['input']
        q1_node['complement'] > csv_comp['input']

        self.run_pipeline(p)

        result = self._tmp_files.csv_read('out.csv')
        ctrl = csv_read(path_of_data('query_ctrl.csv'))

        self.assertTrue(np.array_equal(result, ctrl))

        result = self._tmp_files.csv_read('out_comp.csv')
        ctrl = csv_read(path_of_data('query_ctrl_comp.csv'))

        self.assertTrue(np.array_equal(result, ctrl))
Example #3
0
    def test_cross_validation_score(self):
        rows = 100
        folds = 10

        X = np.random.random((rows, 10))
        y = np.random.randint(0, 2, (rows))

        p = Pipeline()

        np_in_X = p.add(NumpyRead(X))
        np_in_y = p.add(NumpyRead(y))

        cv_score = p.add(
            CrossValidationScore(wrap(SVC), 'score', {}, folds,
                                 random_state=0))
        np_in_X['output'] > cv_score['X_train']
        np_in_y['output'] > cv_score['y_train']

        score_out = p.add(CSVWrite(self._tmp_files('out.csv')))
        cv_score['score'] > score_out['input']

        self.run_pipeline(p)

        result = self._tmp_files.csv_read('out.csv')['f0']

        ctrl_kf = SKKFold(rows, folds, random_state=0)
        ctrl = np.mean(cross_val_score(SVC(), X, y, cv=ctrl_kf))

        self.assertTrue(np.allclose(ctrl, result))
Example #4
0
    def test_grid_search(self):
        """

        Simulates behavior of example in:
        http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html#sklearn.grid_search.GridSearchCV

        """
        folds = 2

        parameters = {
            'kernel': (
                'rbf',
                'linear'),
            'C': [
                1,
                10,
                100],
            'random_state': [0]}
        iris = datasets.load_iris()
        iris_data = iris.data
        iris_target = iris.target

        p = Pipeline()

        node_data = p.add(NumpyRead(iris_data))
        node_target = p.add(NumpyRead(iris_target))
        node_split = p.add(SplitTrainTest(2, random_state=1))
        node_search = p.add(GridSearch(
            wrap(SVC), 
            parameters, 
            'score', 
            cv_stage_kwargs={'n_folds': folds}))
        node_params_out = p.add(CSVWrite(self._tmp_files.get('out.csv')))

        node_data['output'] > node_split['input0']
        node_target['output'] > node_split['input1']
        node_split['train0'] > node_search['X_train']
        node_split['train1'] > node_search['y_train']
        node_split['test0'] > node_search['X_test']
        node_split['test1'] > node_search['y_test']
        node_search['params_out'] > node_params_out['input']

        self.run_pipeline(p)

        result = self._tmp_files.csv_read('out.csv')

        ctrl_X_train, _, ctrl_y_train, _ = train_test_split(
            iris_data, iris_target, random_state=1)
        ctrl_cv = SKKFold(ctrl_y_train.size, folds)
        ctrl_search = grid_search.GridSearchCV(SVC(), parameters, cv=ctrl_cv)
        ctrl_search.fit(ctrl_X_train, ctrl_y_train)
        control = ctrl_search.best_params_

        # TODO a number of configurations tie here, and sklearn picks a different
        # best configuration than upsg does (although they have the same score)
        # ideally, we want to find some parameters where there is a clear 
        # winner
        control = {'C': 10, 'kernel': 'linear', 'random_state': 0}

        self.assertEqual(np_sa_to_dict(np.array([result])), control)
Example #5
0
    def test_3_stage(self):
        from sklearn.preprocessing import Imputer

        infile_name = path_of_data('missing_vals.csv')

        p = Pipeline()

        csv_read_node = p.add(CSVRead(infile_name))
        csv_write_node = p.add(CSVWrite(self._tmp_files.get('out.csv')))
        impute_node = p.add(wrap_and_make_instance(Imputer))

        csv_read_node['output'] > impute_node['X_train']
        impute_node['X_new'] > csv_write_node['input']

        self.run_pipeline(p)

        ctrl_imputer = Imputer()
        ctrl_X_sa = np.genfromtxt(infile_name,
                                  dtype=None,
                                  delimiter=",",
                                  names=True)
        num_type = ctrl_X_sa[0][0].dtype
        ctrl_X_nd, ctrl_X_sa_type = np_sa_to_nd(ctrl_X_sa)
        ctrl_X_new_nd = ctrl_imputer.fit_transform(ctrl_X_nd)
        control = ctrl_X_new_nd

        result = self._tmp_files.csv_read('out.csv', True)

        self.assertTrue(np.allclose(result, control))
Example #6
0
    def test_lambda(self):

        # Test output key generation

        l1 = LambdaStage(lambda x, y: 0)
        self.assertEqual(l1.input_keys, ['x', 'y'])
        self.assertEqual(l1.output_keys, [
            'output0',
        ])

        l2 = LambdaStage(lambda: 0, n_outputs=3)
        self.assertEqual(l2.input_keys, [])
        self.assertEqual(l2.output_keys,
                         ['output{}'.format(i) for i in xrange(3)])

        # Test running in pipeline

        in_data = np_nd_to_sa(np.random.random((100, 10)))
        scale = np_nd_to_sa(np.array(3))
        out_keys = ['augmented', 'log_col', 'sqrt_col', 'scale_col']

        def log1_sqrt2_scale3(A, scale):
            names = A.dtype.names
            log_col = np.log(A[names[0]])
            sqrt_col = np.sqrt(A[names[1]])
            scale_col = A[names[2]] * scale[0][0]

            return (append_fields(A, ['log1', 'sqrt2', 'scale3'],
                                  (log_col, sqrt_col, scale_col)), log_col,
                    sqrt_col, scale_col)

        p = Pipeline()

        np_in = p.add(NumpyRead(in_data))
        scale_in = p.add(NumpyRead(scale))

        lambda_stage = p.add(LambdaStage(log1_sqrt2_scale3, out_keys))
        np_in['output'] > lambda_stage['A']
        scale_in['output'] > lambda_stage['scale']

        csv_out_stages = []
        for key in out_keys:
            stage = p.add(CSVWrite(self._tmp_files('out_{}.csv'.format(key))))
            csv_out_stages.append(stage)
            lambda_stage[key] > stage['input']

        self.run_pipeline(p)

        controls = log1_sqrt2_scale3(in_data, scale)

        for i, key in enumerate(out_keys):
            control = controls[i]
            if is_sa(control):
                control = np_sa_to_nd(control)[0]
            result = self._tmp_files.csv_read('out_{}.csv'.format(key),
                                              as_nd=True)
            self.assertTrue(np.allclose(control, result))
Example #7
0
    def test_sql(self):

        # Make sure we don't accidentally corrupt our test database
        db_path, db_file_name = self._tmp_files.tmp_copy(
            path_of_data('small.db'))
        db_url = 'sqlite:///{}'.format(db_path)

        q_sel_employees = 'CREATE TABLE {tmp_emp} AS SELECT * FROM employees;'
        # We have to be careful about the datetime type in sqlite3. It will
        # forget if we don't keep reminding it, and if it forgets sqlalchemy
        # will be unhappy. Hence, we can't use CREATE TABLE AS if our table
        # has a DATETIME
        q_sel_hours = ('CREATE TABLE {tmp_hrs} '
                       '(id INT, employee_id INT, time DATETIME, '
                       '    event_type TEXT); '
                       'INSERT INTO {tmp_hrs} SELECT * FROM hours;')
        q_join = ('CREATE TABLE {joined} '
                  '(id INT, last_name TEXT, salary REAL, time DATETIME, '
                  '    event_type TEXT); '
                  'INSERT INTO {joined} '
                  'SELECT {tmp_emp}.id, last_name, salary, time, event_type '
                  'FROM {tmp_emp} JOIN {tmp_hrs} ON '
                  '{tmp_emp}.id = {tmp_hrs}.employee_id;')

        p = Pipeline()
        get_emp = p.add(RunSQL(db_url, q_sel_employees, [], ['tmp_emp'], {}))
        get_hrs = p.add(RunSQL(db_url, q_sel_hours, [], ['tmp_hrs'], {}))
        join = p.add(
            RunSQL(db_url, q_join, ['tmp_emp', 'tmp_hrs'], ['joined'], {}))
        csv_out = p.add(CSVWrite(self._tmp_files('out.csv')))

        get_emp['tmp_emp'] > join['tmp_emp']
        get_hrs['tmp_hrs'] > join['tmp_hrs']
        join['joined'] > csv_out['input']

        self.run_pipeline(p)

        ctrl = csv_read(path_of_data('test_transform_test_sql_ctrl.csv'))
        result = self._tmp_files.csv_read('out.csv')
        # Because Numpy insists on printing times with local offsets, but
        # not every computer has the same offset, we have to force it back
        # into UTC
        for i, dt in enumerate(result['time']):
            # .item() makes a datetime, which we can format correctly later
            # http://stackoverflow.com/questions/25134639/how-to-force-python-print-numpy-datetime64-with-specified-timezone
            result['time'][i] = np.datetime64(dt).item().strftime(
                '%Y-%m-%dT%H:%M:%S')
        # Then we have to make the string field smaller
        new_cols = []
        for col in result.dtype.names:
            new_cols.append(result[col].astype(ctrl.dtype[col]))
        result = merge_arrays(new_cols, flatten=True)
        result.dtype.names = ctrl.dtype.names

        self.assertTrue(np.array_equal(result, ctrl))
Example #8
0
    def test_split_columns(self):

        p = Pipeline()

        csv_in = p.add(CSVRead(path_of_data('numbers.csv')))
        split = p.add(SplitColumns(('F1', 'F3')))
        csv_out_sel = p.add(CSVWrite(self._tmp_files('out_sel.csv')))
        csv_out_rest = p.add(CSVWrite(self._tmp_files('out_rest.csv')))

        csv_in['output'] > split['input']
        split['output'] > csv_out_sel['input']
        split['complement'] > csv_out_rest['input']

        self.run_pipeline(p)

        result = self._tmp_files.csv_read('out_sel.csv')
        ctrl = csv_read(path_of_data('test_split_columns_ctrl_selected.csv'))

        self.assertTrue(np.array_equal(result, ctrl))

        result = self._tmp_files.csv_read('out_rest.csv')
        ctrl = csv_read(path_of_data('test_split_columns_ctrl_rest.csv'))

        self.assertTrue(np.array_equal(result, ctrl))
Example #9
0
    def test_fill_na(self):

        p = Pipeline()

        csv_in = p.add(CSVRead(path_of_data('missing_vals_mixed.csv')))
        fill_na = p.add(FillNA(-1))
        csv_out = p.add(CSVWrite(self._tmp_files('out.csv')))

        csv_in['output'] > fill_na['input']
        fill_na['output'] > csv_out['input']

        self.run_pipeline(p)

        result = self._tmp_files.csv_read('out.csv')
        ctrl = csv_read(path_of_data('test_transform_test_fill_na_ctrl.csv'))

        self.assertTrue(np.array_equal(result, ctrl))
Example #10
0
    def test_label_encode(self):

        p = Pipeline()

        csv_in = p.add(CSVRead(path_of_data('categories.csv')))
        le = p.add(LabelEncode())
        csv_out = p.add(CSVWrite(self._tmp_files('out.csv')))

        csv_in['output'] > le['input']
        le['output'] > csv_out['input']

        self.run_pipeline(p)

        result = self._tmp_files.csv_read('out.csv')
        ctrl = csv_read(
            path_of_data('test_transform_test_label_encode_ctrl.csv'))

        self.assertTrue(np.array_equal(result, ctrl))
Example #11
0
    def test_rename_cols(self):
        infile_name = path_of_data('mixed_csv.csv')
        rename_dict = {'name': 'designation', 'height': 'tallness'}

        p = Pipeline()

        csv_read_node = p.add(CSVRead(infile_name))
        trans_node = p.add(RenameCols(rename_dict))
        csv_write_node = p.add(CSVWrite(self._tmp_files('out.csv')))

        csv_read_node['output'] > trans_node['input']
        trans_node['output'] > csv_write_node['input']

        self.run_pipeline(p)

        control = {'id', 'designation', 'tallness'}
        result = set(self._tmp_files.csv_read('out.csv').dtype.names)

        self.assertTrue(np.array_equal(result, control))
Example #12
0
    def test_rw(self):
        infile_name = path_of_data('mixed_csv.csv')

        p = Pipeline()

        csv_read_node = p.add(CSVRead(infile_name))
        csv_write_node = p.add(CSVWrite(self._tmp_files.get('out.csv')))

        csv_read_node['output'] > csv_write_node['input']

        self.run_pipeline(p)

        control = np.genfromtxt(infile_name,
                                dtype=None,
                                delimiter=",",
                                names=True)
        result = self._tmp_files.csv_read('out.csv')

        self.assertTrue(np.array_equal(result, control))
Example #13
0
    def test_cross_validation_score(self):
        rows = 100
        folds = 10

        X = np.random.random((rows, 10))
        y = np.random.randint(0, 2, (rows))

        trials = ((SKKFold, 
                   {'random_state': 0, 'n_folds': folds}, 
                   {'n': rows, 'n_folds': folds, 'random_state': 0}),
                  (StratifiedKFold, 
                   {'random_state': 0, 'n_folds': folds}, 
                   {'y': y, 'n_folds': folds, 'random_state': 0}))

        
        for PartIter, res_kwargs, ctrl_kwargs in trials:

            p = Pipeline()

            np_in_X = p.add(NumpyRead(X))
            np_in_y = p.add(NumpyRead(y))

            cv_score = p.add(CrossValidationScore(
                wrap(SVC), 
                {},
                'score', 
                wrap(PartIter),
                res_kwargs))
            np_in_X['output'] > cv_score['X_train']
            np_in_y['output'] > cv_score['y_train']

            score_out = p.add(CSVWrite(self._tmp_files('out.csv')))
            cv_score['score'] > score_out['input']

            self.run_pipeline(p)

            result = self._tmp_files.csv_read('out.csv')['f0']

            ctrl_kf = PartIter(**ctrl_kwargs)
            ctrl = np.mean(cross_val_score(SVC(), X, y, cv=ctrl_kf))

            self.assertTrue(np.allclose(ctrl, result))
Example #14
0
    def test_kfold(self):

        folds = 3
        rows = 6

        X = np.random.randint(0, 1000, (rows, 3))
        y = np.random.randint(0, 1000, (rows, 1))

        p = Pipeline()

        np_in_X = p.add(NumpyRead(X))
        np_in_y = p.add(NumpyRead(y))

        kfold = p.add(KFold(2, folds, random_state=0))
        np_in_X['output'] > kfold['input0']
        np_in_y['output'] > kfold['input1']

        ctrl_kf = SKKFold(rows, n_folds=folds, random_state=0)
        out_files = []
        expected_folds = []
        arrays = (X, y)
        for fold_i, train_test_inds in enumerate(ctrl_kf):
            for array_i, array in enumerate(arrays):
                for select_i, selection in enumerate(('train', 'test')):
                    out_key = '{}{}_{}'.format(selection, array_i, fold_i)
                    out_file = out_key + '.csv'
                    out_files.append(out_file)
                    stage = p.add(CSVWrite(self._tmp_files(out_file)))
                    kfold[out_key] > stage['input']
                    slice_inds = train_test_inds[select_i]
                    expected_folds.append(
                        np_nd_to_sa(arrays[array_i][slice_inds]))

        self.run_pipeline(p)

        for out_file, expected_fold in zip(out_files, expected_folds):
            self.assertTrue(
                np.array_equal(self._tmp_files.csv_read(out_file),
                               expected_fold))
Example #15
0
    def test_tutorial(self):
        """

        Verifies we can do what sklearn does here:
        http://scikit-learn.org/stable/tutorial/basic/tutorial.html

        """
        digits = datasets.load_digits()
        digits_data = digits.data
        # for now, we need a column vector rather than an array
        digits_target = digits.target

        p = Pipeline()

        # load data from a numpy dataset
        stage_data = NumpyRead(digits_data)
        stage_target = NumpyRead(digits_target)

        # train/test split
        stage_split_data = SplitTrainTest(2, test_size=1, random_state=0)

        # build a classifier
        stage_clf = wrap_and_make_instance(SVC, gamma=0.001, C=100.)

        # output to a csv
        stage_csv = CSVWrite(self._tmp_files('out.csv'))

        node_data, node_target, node_split, node_clf, node_csv = map(
            p.add,
            [stage_data, stage_target, stage_split_data, stage_clf, stage_csv])

        # connect the pipeline stages together
        node_data['output'] > node_split['input0']
        node_target['output'] > node_split['input1']
        node_split['train0'] > node_clf['X_train']
        node_split['train1'] > node_clf['y_train']
        node_split['test0'] > node_clf['X_test']
        node_clf['y_pred'] > node_csv['input']

        self.run_pipeline(p)

        result = self._tmp_files.csv_read('out.csv', True)

        # making sure we get the same result as sklearn
        clf = SVC(gamma=0.001, C=100.)
        # The tutorial just splits using array slicing, but we need to make
        #   sure that both UPSG and sklearn are splitting the same way, so we
        #   do something more sophisticated
        train_X, test_X, train_y, test_y = train_test_split(digits_data,
                                                            digits_target,
                                                            test_size=1,
                                                            random_state=0)
        clf.fit(train_X, np.ravel(train_y))
        control = clf.predict(test_X)[0]

        self.assertAlmostEqual(result, control)

        # model persistance
        s = pickle.dumps(stage_clf)
        stage_clf2 = pickle.loads(s)
        self.assertEqual(stage_clf.get_params(), stage_clf2.get_params())
Example #16
0
    def __simple_pipeline(self,
                          sk_cls,
                          sk_method_name,
                          upsg_out_key,
                          init_kwargs={},
                          in_data=None):

        X_in, y_in = self.__process_in_data(in_data)

        ctrl_sk_inst = sk_cls(**init_kwargs)
        est_params = ctrl_sk_inst.get_params()
        try:
            random_state = est_params['random_state']
            if random_state is None:
                # This has to be fixed. Set a state and try again
                init_kwargs['random_state'] = 0
                ctrl_sk_inst = sk_cls(**init_kwargs)
        except KeyError:
            pass

        p = Pipeline()

        sk_stage = p.add(wrap_and_make_instance(sk_cls, **init_kwargs))

        X_in_stage = p.add(NumpyRead(X_in))
        y_in_stage = p.add(NumpyRead(y_in))

        if sk_method_name == 'predict':
            train_test = p.add(SplitTrainTest(2, random_state=0))
            X_in_stage['output'] > train_test['input0']
            y_in_stage['output'] > train_test['input1']

            input_keys = sk_stage.get_stage().input_keys
            if 'X_train' in input_keys:
                train_test['train0'] > sk_stage['X_train']
            if 'X_test' in input_keys:
                train_test['test0'] > sk_stage['X_test']
            if 'y_train' in input_keys:
                train_test['train1'] > sk_stage['y_train']
        else:
            X_in_stage['output'] > sk_stage['X_train']
            y_in_stage['output'] > sk_stage['y_train']

        csv_out = p.add(CSVWrite(self._tmp_files.get('out.csv')))
        sk_stage[upsg_out_key] > csv_out['input']

        self.run_pipeline(p)

        if sk_method_name == 'predict':
            ctrl_X_train, ctrl_X_test, ctrl_y_train, ctrl_y_test = (
                train_test_split(X_in, y_in, random_state=0))
            ctrl_sk_inst.fit(ctrl_X_train, ctrl_y_train)
            control = ctrl_sk_inst.predict(ctrl_X_test)
        else:
            control = ctrl_sk_inst.fit_transform(X_in, y_in)

        result = self._tmp_files.csv_read('out.csv', as_nd=True)
        if result.ndim != control.ndim and result.ndim == 1:
            result = result.reshape(result.size, 1)

        self.assertTrue(result.shape == control.shape
                        and np.allclose(result, control))
Example #17
0
    def __metric_pipeline(self, metric, params={}, in_data=None):

        X_in, y_in = self.__process_in_data(in_data)

        metric_stage = wrap_and_make_instance(metric, **params)
        in_keys = metric_stage.input_keys
        out_keys = metric_stage.output_keys

        p = Pipeline()

        node_X_in = p.add(NumpyRead(X_in))
        node_y_in = p.add(NumpyRead(y_in))

        node_split = p.add(SplitTrainTest(2, random_state=0))
        node_X_in['output'] > node_split['input0']
        node_y_in['output'] > node_split['input1']

        ctrl_X_train, ctrl_X_test, ctrl_y_train, ctrl_y_test = (
            train_test_split(X_in, y_in, random_state=0))

        node_clf = p.add(wrap_and_make_instance(SVC, random_state=0))
        node_split['train0'] > node_clf['X_train']
        node_split['train1'] > node_clf['y_train']
        node_split['test0'] > node_clf['X_test']

        ctrl_clf = SVC(random_state=0, probability=True)
        ctrl_clf.fit(ctrl_X_train, ctrl_y_train)

        node_proba_1 = p.add(SplitY(1))
        node_clf['pred_proba'] > node_proba_1['input']

        ctrl_y_score = ctrl_clf.predict_proba(ctrl_X_test)[:, 1]

        node_metric = p.add(metric_stage)

        ctrl_metric_args = {}
        if 'y_true' in in_keys:
            node_split['test1'] > node_metric['y_true']
            ctrl_metric_args['y_true'] = ctrl_y_test
        if 'y_score' in in_keys:
            node_proba_1['y'] > node_metric['y_score']
            ctrl_metric_args['y_score'] = ctrl_y_score
        if 'probas_pred' in in_keys:
            node_proba_1['y'] > node_metric['probas_pred']
            ctrl_metric_args['probas_pred'] = ctrl_y_score

        out_nodes = [
            p.add(CSVWrite(self._tmp_files('out_{}.csv'.format(out_key))))
            for out_key in out_keys
        ]
        [
            node_metric[out_key] > out_nodes[i]['input']
            for i, out_key in enumerate(out_keys)
        ]

        self.run_pipeline(p)

        ctrl_returns = metric(**ctrl_metric_args)
        if len(out_keys) == 1:
            ctrl_returns = (ctrl_returns, )

        for i, out_key in enumerate(out_keys):
            control = ctrl_returns[i]
            result = self._tmp_files.csv_read('out_{}.csv'.format(out_key),
                                              as_nd=True)
            self.assertTrue(result.shape == control.shape
                            and np.allclose(result, control))