def search_influence_detail(uid_list, index_name, doctype):
    result = es.mget(index=index_name,
                     doc_type=doctype,
                     body={"ids": uid_list},
                     _source=True)["docs"]

    return result[0]['_source']
Example #2
0
def get_user_detail(date, input_result, status):
    results = []
    if status=='show_in':
        uid_list = input_result
    if status=='show_compute':
        uid_list = input_result.keys()
    if status=='show_in_history':
        uid_list = input_result.keys()
    if date!='all':
        index_name = 'bci_' + ''.join(date.split('-'))
    else:
        now_ts = time.time()
        now_date = ts2datetime(now_ts)
        index_name = 'bci_' + ''.join(now_date.split('-'))
    index_type = 'bci'
    user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
    user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
    max_evaluate_influ = get_evaluate_max(index_name)
    for i in range(0, len(uid_list)):
        uid = uid_list[i]
        bci_dict = user_bci_result[i]
        profile_dict = user_profile_result[i]
        try:
            bci_source = bci_dict['_source']
        except:
            bci_source = None
        if bci_source:
            influence = bci_source['user_index']
            influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
            influence = influence * 100
        else:
            influence = ''
        try:
            profile_source = profile_dict['_source']
        except:
            profile_source = None
        if profile_source:
            uname = profile_source['nick_name'] 
            location = profile_source['user_location']
            fansnum = profile_source['fansnum']
            statusnum = profile_source['statusnum']
        else:
            uname = ''
            location = ''
            fansnum = ''
            statusnum = ''
        if status == 'show_in':
            results.append([uid, uname, location, fansnum, statusnum, influence])
        if status == 'show_compute':
            in_date = json.loads(input_result[uid])[0]
            compute_status = json.loads(input_result[uid])[1]
            if compute_status == '1':
                compute_status = '3'
            results.append([uid, uname, location, fansnum, statusnum, influence, in_date, compute_status])
        if status == 'show_in_history':
            in_status = input_result[uid]
            results.append([uid, uname, location, fansnum, statusnum, influence, in_status])

    return results
def get_recommentation(submit_user):
    if RUN_TYPE:
        now_ts = time.time()
    else:
        now_ts = datetime2ts(RUN_TEST_TIME)

    in_portrait_set = set(r.hkeys("compute"))
    result = []
    for i in range(7):
        iter_ts = now_ts - i*DAY
        iter_date = ts2datetime(iter_ts)
        submit_user_recomment = "recomment_" + submit_user + "_" + str(iter_date)
        bci_date = ts2datetime(iter_ts - DAY)
        submit_user_recomment = r.hkeys(submit_user_recomment)
        bci_index_name = "bci_" + bci_date.replace('-', '')
        exist_bool = es_cluster.indices.exists(index=bci_index_name)
        if not exist_bool:
            continue
        if submit_user_recomment:
            user_bci_result = es_cluster.mget(index=bci_index_name, doc_type="bci", body={'ids':submit_user_recomment}, _source=True)['docs']
            user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':submit_user_recomment}, _source=True)['docs']
            max_evaluate_influ = get_evaluate_max(bci_index_name)
            for i in range(len(submit_user_recomment)):
                uid = submit_user_recomment[i]
                bci_dict = user_bci_result[i]
                profile_dict = user_profile_result[i]
                try:
                    bci_source = bci_dict['_source']
                except:
                    bci_source = None
                if bci_source:
                    influence = bci_source['user_index']
                    influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
                    influence = influence * 100
                else:
                    influence = ''
                try:
                    profile_source = profile_dict['_source']
                except:
                    profile_source = None
                if profile_source:
                    uname = profile_source['nick_name']
                    location = profile_source['user_location']
                    fansnum = profile_source['fansnum']
                    statusnum = profile_source['statusnum']
                else:
                    uname = ''
                    location = ''
                    fansnum = ''
                    statusnum = ''
                if uid in in_portrait_set:
                    in_portrait = "1"
                else:
                    in_portrait = "0"
                recomment_day = iter_date
                result.append([iter_date, uid, uname, location, fansnum, statusnum, influence, in_portrait])

    return result    
def search_influence_detail(uid_list, index_name, doctype):
    result = es.mget(index=index_name, doc_type=doctype, body={"ids": uid_list}, _source=True)["docs"]

    return result[0]['_source']
def get_user_detail(date, input_result, status, user_type="influence", auth=""):
    bci_date = ts2datetime(datetime2ts(date) - DAY)
    results = []
    if status=='show_in':
        uid_list = input_result
    if status=='show_compute':
        uid_list = input_result.keys()
    if status=='show_in_history':
        uid_list = input_result.keys()
    if date!='all':
        index_name = 'bci_' + ''.join(bci_date.split('-'))
    else:
        now_ts = time.time()
        now_date = ts2datetime(now_ts)
        index_name = 'bci_' + ''.join(now_date.split('-'))
    index_type = 'bci'
    user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
    user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
    max_evaluate_influ = get_evaluate_max(index_name)
    for i in range(0, len(uid_list)):
        uid = uid_list[i]
        bci_dict = user_bci_result[i]
        profile_dict = user_profile_result[i]
        try:
            bci_source = bci_dict['_source']
        except:
            bci_source = None
        if bci_source:
            influence = bci_source['user_index']
            influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
            influence = influence * 100
        else:
            influence = ''
        try:
            profile_source = profile_dict['_source']
        except:
            profile_source = None
        if profile_source:
            uname = profile_source['nick_name'] 
            location = profile_source['user_location']
            fansnum = profile_source['fansnum']
            statusnum = profile_source['statusnum']
        else:
            uname = ''
            location = ''
            fansnum = ''
            statusnum = ''
        if status == 'show_in':
            if user_type == "sensitive":
                tmp_ts = datetime2ts(date) - DAY
                tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
                if tmp_data:
                    sensitive_dict = json.loads(tmp_data)
                    sensitive_words = sensitive_dict.keys()
                else:
                    sensitive_words = []
                results.append([uid, uname, location, fansnum, statusnum, influence, sensitive_words])
            else:
                results.append([uid, uname, location, fansnum, statusnum, influence])
            if auth:
                hashname_submit = "submit_recomment_" + date
                tmp_data = json.loads(r.hget(hashname_submit, uid))
                recommend_list = (tmp_data['operation']).split('&')
                admin_list = []
                admin_list.append(tmp_data['system'])
                admin_list.append(list(set(recommend_list)))
                admin_list.append(len(recommend_list))
                results[-1].extend(admin_list)
        if status == 'show_compute':
            in_date = json.loads(input_result[uid])[0]
            compute_status = json.loads(input_result[uid])[1]
            if compute_status == '1':
                compute_status = '3'
            results.append([uid, uname, location, fansnum, statusnum, influence, in_date, compute_status])
        if status == 'show_in_history':
            in_status = input_result[uid]
            if user_type == "sensitive":
                tmp_ts = datetime2ts(date) - DAY
                tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
                if tmp_data:
                    sensitive_dict = json.loads(tmp_data)
                    sensitive_words = sensitive_dict.keys()
                results.append([uid, uname, location, fansnum, statusnum, influence, in_status, sensitive_words])
            else:
                results.append([uid, uname, location, fansnum, statusnum, influence, in_status])

    return results
Example #6
0
 sensitive_string = "sensitive_score_" + tmp_ts
 query_sensitive_body = {
     "query":{
         "match_all":{}
     },
     "size":1,
     "sort":{sensitive_string:{"order":"desc"}}
 }
 try:
     top_sensitive_result = es_bci_history.search(index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX, body=query_sensitive_body, _source=False, fields=[sensitive_string])['hits']['hits']
     top_sensitive = top_sensitive_result[0]['fields'][sensitive_string][0]
 except Exception, reason:
     print Exception, reason
     top_sensitive = 400
 index_type = 'bci'
 user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
 user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
 bci_history_result = es_bci_history.mget(index=bci_history_index_name, doc_type=bci_history_index_type, body={"ids":uid_list}, fields=['user_fansnum', 'weibo_month_sum'])['docs']
 sensitive_history_result = es_bci_history.mget(index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX, body={'ids':uid_list}, fields=[sensitive_string], _source=False)['docs']
 max_evaluate_influ = get_evaluate_max(index_name)
 for i in range(0, len(uid_list)):
     uid = uid_list[i]
     bci_dict = user_bci_result[i]
     profile_dict = user_profile_result[i]
     bci_history_dict = bci_history_result[i]
     sensitive_history_dict = sensitive_history_result[i]
     #print sensitive_history_dict
     try:
         bci_source = bci_dict['_source']
     except:
         bci_source = None
Example #7
0
def get_recommentation(submit_user):
    if RUN_TYPE:
        now_ts = time.time()
    else:
        now_ts = datetime2ts(RUN_TEST_TIME)

    in_portrait_set = set(r.hkeys("compute"))
    result = []
    for i in range(7):
        iter_ts = now_ts - i * DAY
        iter_date = ts2datetime(iter_ts)
        submit_user_recomment = "recomment_" + submit_user + "_" + str(
            iter_date)
        bci_date = ts2datetime(iter_ts - DAY)
        submit_user_recomment = r.hkeys(submit_user_recomment)
        bci_index_name = "bci_" + bci_date.replace('-', '')
        exist_bool = es_cluster.indices.exists(index=bci_index_name)
        if not exist_bool:
            continue
        if submit_user_recomment:
            user_bci_result = es_cluster.mget(
                index=bci_index_name,
                doc_type="bci",
                body={'ids': submit_user_recomment},
                _source=True)['docs']
            user_profile_result = es_user_profile.mget(
                index='weibo_user',
                doc_type='user',
                body={'ids': submit_user_recomment},
                _source=True)['docs']
            max_evaluate_influ = get_evaluate_max(bci_index_name)
            for i in range(len(submit_user_recomment)):
                uid = submit_user_recomment[i]
                bci_dict = user_bci_result[i]
                profile_dict = user_profile_result[i]
                try:
                    bci_source = bci_dict['_source']
                except:
                    bci_source = None
                if bci_source:
                    influence = bci_source['user_index']
                    influence = math.log(
                        influence / max_evaluate_influ['user_index'] * 9 + 1,
                        10)
                    influence = influence * 100
                else:
                    influence = ''
                try:
                    profile_source = profile_dict['_source']
                except:
                    profile_source = None
                if profile_source:
                    uname = profile_source['nick_name']
                    location = profile_source['user_location']
                    fansnum = profile_source['fansnum']
                    statusnum = profile_source['statusnum']
                else:
                    uname = ''
                    location = ''
                    fansnum = ''
                    statusnum = ''
                if uid in in_portrait_set:
                    in_portrait = "1"
                else:
                    in_portrait = "0"
                recomment_day = iter_date
                result.append([
                    iter_date, uid, uname, location, fansnum, statusnum,
                    influence, in_portrait
                ])

    return result
Example #8
0
def get_user_detail(date, input_result, status, user_type="influence", auth=""):
    results = []
    if status=='show_in':
        uid_list = input_result
    if status=='show_compute':
        uid_list = input_result.keys()
    if status=='show_in_history':
        uid_list = input_result.keys()
    if date!='all':
        index_name = 'bci_' + ''.join(date.split('-'))
    else:
        now_ts = time.time()
        now_date = ts2datetime(now_ts)
        index_name = 'bci_' + ''.join(now_date.split('-'))
    index_type = 'bci'
    user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
    user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
    max_evaluate_influ = get_evaluate_max(index_name)
    for i in range(0, len(uid_list)):
        uid = uid_list[i]
        bci_dict = user_bci_result[i]
        profile_dict = user_profile_result[i]
        try:
            bci_source = bci_dict['_source']
        except:
            bci_source = None
        if bci_source:
            influence = bci_source['user_index']
            influence = math.log(influence/max_evaluate_influ['user_index'] * 9 + 1 ,10)
            influence = influence * 100
        else:
            influence = ''
        try:
            profile_source = profile_dict['_source']
        except:
            profile_source = None
        if profile_source:
            uname = profile_source['nick_name'] 
            location = profile_source['user_location']
            fansnum = profile_source['fansnum']
            statusnum = profile_source['statusnum']
        else:
            uname = ''
            location = ''
            fansnum = ''
            statusnum = ''
        if status == 'show_in':
            if user_type == "sensitive":
                tmp_ts = datetime2ts(date) - DAY
                tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
                if tmp_data:
                    sensitive_dict = json.loads(tmp_data)
                    sensitive_words = sensitive_dict.keys()
                else:
                    senstive_words = []
                results.append([uid, uname, location, fansnum, statusnum, influence, sensitive_words])
            else:
                results.append([uid, uname, location, fansnum, statusnum, influence])
            if auth:
                hashname_submit = "submit_recomment_" + date
                tmp_data = json.loads(r.hget(hashname_submit, uid))
                recommend_list = (tmp_data['operation']).split('&')
                admin_list = []
                admin_list.append(tmp_data['system'])
                admin_list.append(list(set(recommend_list)))
                admin_list.append(len(recommend_list))
                results[-1].extend(admin_list)
        if status == 'show_compute':
            in_date = json.loads(input_result[uid])[0]
            compute_status = json.loads(input_result[uid])[1]
            if compute_status == '1':
                compute_status = '3'
            results.append([uid, uname, location, fansnum, statusnum, influence, in_date, compute_status])
        if status == 'show_in_history':
            in_status = input_result[uid]
            if user_type == "sensitive":
                tmp_ts = datetime2ts(date) - DAY
                tmp_data = r_cluster.hget("sensitive_"+str(tmp_ts), uid)
                if tmp_data:
                    sensitive_dict = json.loads(tmp_data)
                    sensitive_words = sensitive_dict.keys()
                results.append([uid, uname, location, fansnum, statusnum, influence, in_status, sensitive_words])
            else:
                results.append([uid, uname, location, fansnum, statusnum, influence, in_status])

    return results
 sensitive_string = "sensitive_score_" + tmp_ts
 query_sensitive_body = {
     "query":{
         "match_all":{}
     },
     "size":1,
     "sort":{sensitive_string:{"order":"desc"}}
 }
 try:
     top_sensitive_result = es_bci_history.search(index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX, body=query_sensitive_body, _source=False, fields=[sensitive_string])['hits']['hits']
     top_sensitive = top_sensitive_result[0]['fields'][sensitive_string][0]
 except Exception, reason:
     print Exception, reason
     top_sensitive = 400
 index_type = 'bci'
 user_bci_result = es_cluster.mget(index=index_name, doc_type=index_type, body={'ids':uid_list}, _source=True)['docs']
 user_profile_result = es_user_profile.mget(index='weibo_user', doc_type='user', body={'ids':uid_list}, _source=True)['docs']
 bci_history_result = es_bci_history.mget(index=bci_history_index_name, doc_type=bci_history_index_type, body={"ids":uid_list}, fields=['user_fansnum', 'weibo_month_sum'])['docs']
 sensitive_history_result = es_bci_history.mget(index=ES_SENSITIVE_INDEX, doc_type=DOCTYPE_SENSITIVE_INDEX, body={'ids':uid_list}, fields=[sensitive_string], _source=False)['docs']
 max_evaluate_influ = get_evaluate_max(index_name)
 for i in range(0, len(uid_list)):
     uid = uid_list[i]
     bci_dict = user_bci_result[i]
     profile_dict = user_profile_result[i]
     bci_history_dict = bci_history_result[i]
     sensitive_history_dict = sensitive_history_result[i]
     #print sensitive_history_dict
     try:
         bci_source = bci_dict['_source']
     except:
         bci_source = None
Example #10
0
def influenced_user_detail(uid, date, origin_retweeted_mid, retweeted_retweeted_mid, message_type, default_number=20):
    query_body = {
        "query":{
            "filtered":{
                "filter":{
                    "bool":{
                        "must": [
                        ]
                    }
                }
            }
        },
        "size":100000,
        "sort":{"user_fansnum":{"order":"desc"}}
    }
    #详细影响到的人 
    date1 = str(date).replace('-', '')
    index_name = pre_index + date1
    index_flow_text = pre_text_index + date
    origin_retweeted_uid = [] # influenced user uid_list
    retweeted_retweeted_uid = []
    origin_comment_uid = []
    retweeted_comment_uid = []
    query_origin = copy.deepcopy(query_body)
    query_retweeted = copy.deepcopy(query_body)
    if origin_retweeted_mid: # 所有转发该条原创微博的用户
        query_origin["query"]["filtered"]["filter"]["bool"]["must"].append({"terms": {"root_mid": origin_retweeted_mid}})
        query_origin["query"]["filtered"]["filter"]["bool"]["must"].extend([{"term":{"message_type": message_type}}, {"term":{"root_uid": uid}}])
        origin_retweeted_result = es.search(index=index_flow_text, doc_type=flow_text_index_type, body=query_origin, fields=["uid"])["hits"]["hits"]
        if origin_retweeted_result:
            for item in origin_retweeted_result:
                origin_retweeted_uid.append(item["fields"]["uid"][0])
    if retweeted_retweeted_mid: # 所有评论该条原创微博的用户
        query_retweeted["query"]["filtered"]["filter"]["bool"]["must"].append({"terms": {"root_mid": retweeted_retweeted_mid}})
        query_retweeted["query"]["filtered"]["filter"]["bool"]["must"].extend([{"term":{"message_type": message_type}},{"term": {"directed_uid": uid}}])
        retweeted_retweeted_result = es.search(index=index_flow_text, doc_type=flow_text_index_type, body=query_retweeted, fields=["uid"])["hits"]["hits"]
        if retweeted_retweeted_result:
            for item in retweeted_retweeted_result:
                retweeted_retweeted_uid.append(item["fields"]["uid"][0])
    retweeted_uid_list = [] # all retweeted user list
    retweeted_results = {} # statistics of all retweeted uid information
    retweeted_domain = {}
    retweeted_topic = {}
    retweeted_geo = {}
    bci_results = {}
    in_portrait = []
    out_portrait = []
    average_influence = 0
    total_influence = 0
    count = 0
    all_uid_set = set(origin_retweeted_uid) | set(retweeted_retweeted_uid)

    retweeted_uid_list.extend(origin_retweeted_uid)
    retweeted_uid_list.extend(retweeted_retweeted_uid)
    retweeted_uid_list = list(set(retweeted_uid_list) - set([uid])) # filter uids
    if retweeted_uid_list:
        user_portrait_result = es_user_portrait.mget(index=user_portrait, doc_type=portrait_index_type, body={"ids": retweeted_uid_list}, fields=["domain", "topic_string", "activity_geo_dict","importance", "influence"])["docs"]
        bci_index = "bci_" + date.replace('-', '')
        bci_results = es_cluster.mget(index=bci_index, doc_type="bci", body={"ids":retweeted_uid_list}, fields=['user_index'])["docs"]
        for item in user_portrait_result:
            if item["found"]:
                temp = []
                count += 1
                temp.append(item['_id'])
                temp.append(item["fields"]["importance"][0])
                in_portrait.append(temp)
                temp_domain = item["fields"]["domain"][0].split('&')
                temp_topic = item["fields"]["topic_string"][0].split('&')
                temp_geo = json.loads(item["fields"]["activity_geo_dict"][0])[-1].keys()
                #total_influence += item["fields"]["influence"][0]
                retweeted_domain = aggregation(temp_domain, retweeted_domain)
                retweeted_topic = aggregation(temp_topic, retweeted_topic)
                retweeted_geo = aggregation(temp_geo, retweeted_geo)
            else:
                out_portrait.append(item['_id'])
        retweeted_domain = proportion(retweeted_domain)
        retweeted_topic = proportion(retweeted_topic)
        retweeted_geo = proportion(retweeted_geo)


    if bci_results:
        total_influence = 0
        for item in bci_results:
            if item['found']:
                total_influence += item['fields']['user_index'][0]
    try:
        average_influence = total_influence/len(retweeted_uid_list)
    except:
        average_influence = 0

    sorted_retweeted_domain = sorted(retweeted_domain.items(),key=lambda x:x[1], reverse=True)
    sorted_retweeted_topic = sorted(retweeted_topic.items(),key=lambda x:x[1], reverse=True)
    sorted_retweeted_geo = sorted(retweeted_geo.items(), key=lambda x:x[1], reverse=True)
    retweeted_results["domian"] = sorted_retweeted_domain[:5]
    retweeted_results["topic"] = sorted_retweeted_topic[:5]
    retweeted_results["geo"] = sorted_retweeted_geo[:5]
    retweeted_results["influence"] = average_influence
    in_portrait = sorted(in_portrait, key=lambda x:x[1], reverse=True)

    temp_list = []
    for item in in_portrait:
        temp_list.append(item[0])
    retweeted_results['in_portrait_number'] = len(temp_list)
    retweeted_results['out_portrait_number'] = len(out_portrait)
    in_portrait_url = get_user_url(temp_list[:default_number])
    out_portrait_url = get_user_url(out_portrait[:default_number])
    retweeted_results["in_portrait"] = in_portrait_url
    retweeted_results["out_portrait"] = out_portrait_url
    retweeted_results["total_number"] = len(temp_list) + len(out_portrait)
 

    return retweeted_results