Example #1
0
def json2npz(src_path, dst_path, cfg, plot=False):
    split = 'test'
    os.makedirs(dst_path, exist_ok=True)

    json_file = os.path.join(src_path, f'{split}.json')
    with open(json_file, 'r') as f:
        dataset = json.load(f)

    for data in tqdm(dataset, desc=split):
        filename = data['filename']
        lines = np.asarray(data['lines'])
        image = cv2.imread(os.path.join(src_path, 'image', filename))

        if cfg.type == 'fisheye':
            coeff = {'K': np.asarray(data['K']), 'D': np.asarray(data['D'])}
            camera = cam.Fisheye(coeff)
            pts_list = camera.interp_line(lines, resolution=0.01)
            lines = bez.fit_line(pts_list, order=6)[0]
        elif cfg.type == 'spherical':
            image_size = (image.shape[1], image.shape[0])
            camera = cam.Spherical(image_size)
            lines = camera.truncate_line(lines)
            lines = camera.remove_line(lines, thresh=10.0)
            pts_list = camera.interp_line(lines, resolution=0.01)
            lines = bez.fit_line(pts_list, order=6)[0]

        prefix = os.path.join(dst_path, filename.split('.')[0])
        save_npz(prefix, image, lines.copy(), cfg.heatmap_size)

        if plot:
            bez.insert_line(image, lines, color=[0, 0, 255])
            bez.insert_point(image, lines, color=[255, 0, 0], thickness=4)
            cv2.namedWindow('image', 0)
            cv2.imshow('image', image)
            cv2.waitKey()
Example #2
0
    def call_back(data):
        filename = data['filename']
        lines0 = np.asarray(data['lines'])
        image0 = cv2.imread(os.path.join(src_path, 'image', filename))

        if cfg.type == 'pinhole':
            camera = cam.Pinhole()
        elif cfg.type == 'fisheye':
            coeff = {'K': np.asarray(data['K']), 'D': np.asarray(data['D'])}
            camera = cam.Fisheye(coeff)
        else:
            image_size = (image0.shape[1], image0.shape[0])
            camera = cam.Spherical(image_size)

        if split == 'train':
            for i in range(len(tfs)):
                image, lines = tfs[i](image0, lines0)
                if cfg.type == 'spherical':
                    lines = camera.truncate_line(lines)
                lines = camera.remove_line(lines, thresh=10.0)
                pts_list = camera.interp_line(lines)
                lines = bez.fit_line(pts_list, order=2)[0]
                centers = lines[:, 1]
                lines = bez.fit_line(pts_list, order=cfg.order)[0]

                prefix = os.path.join(dst_path, split,
                                      filename.split('.')[0] + f'_{i}')
                save_npz(prefix, image, lines.copy(), centers, cfg)

                if plot:
                    bez.insert_line(image, lines, color=[0, 0, 255])
                    bez.insert_point(image,
                                     lines,
                                     color=[255, 0, 0],
                                     thickness=2)
                    cv2.namedWindow('image', 0)
                    cv2.imshow('image', image)
                    cv2.waitKey()

        else:
            image, lines = image0.copy(), lines0.copy()
            if cfg.type == 'spherical':
                lines = camera.truncate_line(lines)
                lines = camera.remove_line(lines, thresh=10.0)
            pts_list = camera.interp_line(lines)
            lines = bez.fit_line(pts_list, order=2)[0]
            centers = lines[:, 1]
            lines = bez.fit_line(pts_list, order=cfg.order)[0]

            prefix = os.path.join(dst_path, split, filename.split('.')[0])
            save_npz(f'{prefix}', image, lines.copy(), centers, cfg)

            if plot:
                bez.insert_line(image, lines, color=[0, 0, 255])
                bez.insert_point(image, lines, color=[255, 0, 0], thickness=2)
                cv2.namedWindow('image', 0)
                cv2.imshow('image', image)
                cv2.waitKey()
    def call_back(data):
        filename = data['filename']
        lines0 = np.asarray(data['lines'])
        image0 = cv2.imread(os.path.join(src_path, 'image', filename))
        coeff = {'K': np.asarray(data['K']), 'D': np.asarray(data['D'])}
        camera = cam.Fisheye(coeff)

        if split == 'train':
            for i in range(len(tfs)):
                image, lines = tfs[i](image0, lines0)
                pts_list = camera.interp_line(lines, resolution=0.01)
                lines = bez.fit_line(pts_list, order=2)[0]
                centers = lines[:, 1]
                lines = bez.fit_line(pts_list, order=cfg.order)[0]

                prefix = os.path.join(dst_path, split, filename.split('.')[0] + f'_{i}')
                save_npz(prefix, image, lines.copy(), centers, cfg)

                if plot:
                    bez.insert_line(image, lines, color=[0, 0, 255])
                    bez.insert_point(image, lines, color=[255, 0, 0], thickness=2)
                    cv2.namedWindow('image', 0)
                    cv2.imshow('image', image)
                    cv2.waitKey()

        else:
            image, lines = image0.copy(), lines0.copy()
            pts_list = camera.interp_line(lines, coeff, resolution=0.01)
            lines = bez.fit_line(pts_list, order=2)[0]
            centers = lines[:, 1]
            lines = bez.fit_line(pts_list, order=cfg.order)[0]

            prefix = os.path.join(dst_path, split, filename.split('.')[0])
            save_npz(f'{prefix}', image, lines.copy(), centers, cfg)

            if plot:
                bez.insert_line(image, lines, color=[0, 0, 255])
                bez.insert_point(image, lines, color=[255, 0, 0], thickness=2)
                cv2.namedWindow('image', 0)
                cv2.imshow('image', image)
                cv2.waitKey()
Example #4
0
    def call_back(data):
        filename = data['filename']
        lines0 = np.asarray(data['lines'])
        image0 = cv2.imread(os.path.join(src_path, 'image', filename))

        if split == 'train':
            for i in range(len(tfs)):
                image, lines = tfs[i](image0, lines0)
                centers = lines.mean(axis=1)

                prefix = os.path.join(dst_path, split,
                                      filename.split('.')[0] + f'_{i}')
                save_npz(prefix, image, lines.copy(), centers, cfg)

                if plot:
                    bez.insert_line(image, lines, color=[0, 0, 255])
                    bez.insert_point(image,
                                     lines,
                                     color=[255, 0, 0],
                                     thickness=2)
                    cv2.namedWindow('image', 0)
                    cv2.imshow('image', image)
                    cv2.waitKey()

        else:
            image, lines = image0.copy(), lines0.copy()
            centers = lines.mean(axis=1)

            prefix = os.path.join(dst_path, split, filename.split('.')[0])
            save_npz(f'{prefix}', image, lines.copy(), centers, cfg)

            if plot:
                bez.insert_line(image, lines, color=[0, 0, 255])
                bez.insert_point(image, lines, color=[255, 0, 0], thickness=2)
                cv2.namedWindow('image', 0)
                cv2.imshow('image', image)
                cv2.waitKey()
Example #5
0
def save_npz(prefix, image, lines, centers, cfg):
    n_pts = cfg.order + 1
    image_size = (image.shape[1], image.shape[0])
    heatmap_size = cfg.heatmap_size
    sx, sy = heatmap_size[0] / image_size[0], heatmap_size[1] / image_size[1]

    lines_mask = lines[:, 0, 1] > lines[:, -1, 1]
    lines[lines_mask] = lines[lines_mask, ::-1]
    lines[:, :, 0] = np.clip(lines[:, :, 0] * sx, 0, heatmap_size[0] - 1e-4)
    lines[:, :, 1] = np.clip(lines[:, :, 1] * sy, 0, heatmap_size[1] - 1e-4)
    centers[:, 0] = np.clip(centers[:, 0] * sx, 0, heatmap_size[0] - 1e-4)
    centers[:, 1] = np.clip(centers[:, 1] * sy, 0, heatmap_size[1] - 1e-4)

    jmap = np.zeros((1, ) + heatmap_size[::-1], dtype=np.float32)
    joff = np.zeros((2, ) + heatmap_size[::-1], dtype=np.float32)
    cmap = np.zeros((1, ) + heatmap_size[::-1], dtype=np.float32)
    coff = np.zeros((2, ) + heatmap_size[::-1], dtype=np.float32)
    lvec = np.zeros((
        (n_pts // 2) * 2,
        2,
    ) + heatmap_size[::-1],
                    dtype=np.float32)
    lmap = np.zeros((1, ) + heatmap_size[::-1], dtype=np.float32)

    juncs = np.concatenate((lines[:, 0], lines[:, -1]))
    juncs = np.round(juncs, 3)
    juncs = np.unique(juncs, axis=0)
    lpos = lines.copy()
    lneg = []

    if n_pts % 2 == 1:
        lines = np.delete(lines, n_pts // 2, axis=1)

    def to_int(x):
        return tuple(map(int, x))

    for c, pts in zip(centers, lines):
        v0, v1 = pts[0], pts[-1]

        cint = to_int(c)
        vint0 = to_int(v0)
        vint1 = to_int(v1)
        jmap[0, vint0[1], vint0[0]] = 1
        jmap[0, vint1[1], vint1[0]] = 1
        joff[:, vint0[1], vint0[0]] = v0 - vint0 - 0.5
        joff[:, vint1[1], vint1[0]] = v1 - vint1 - 0.5
        cmap[0, cint[1], cint[0]] = 1
        coff[:, cint[1], cint[0]] = c - cint - 0.5
        lvec[:, :, cint[1], cint[0]] = pts - c

    lvec = lvec.reshape((-1, ) + heatmap_size[::-1])
    lmap[0] = bez.insert_line(lmap[0], lpos, color=255) / 255.0

    np.savez_compressed(f'{prefix}.npz',
                        junc=juncs,
                        lpos=lpos,
                        lneg=lneg,
                        jmap=jmap,
                        joff=joff,
                        cmap=cmap,
                        coff=coff,
                        lvec=lvec,
                        lmap=lmap)
    cv2.imwrite(f'{prefix}.png', image)
Example #6
0
def save_npz(prefix, image, lines, centers, cfg):
    n_pts = cfg.order + 1
    image_size = (image.shape[1], image.shape[0])
    heatmap_size = cfg.heatmap_size
    sx, sy = heatmap_size[0] / image_size[0], heatmap_size[1] / image_size[1]

    lines_mask = lines[:, 0, 1] > lines[:, -1, 1]
    lines[lines_mask] = lines[lines_mask, ::-1]
    lines[:, :, 0] = np.clip(lines[:, :, 0] * sx, 0, heatmap_size[0] - 1e-4)
    lines[:, :, 1] = np.clip(lines[:, :, 1] * sy, 0, heatmap_size[1] - 1e-4)
    centers[:, 0] = np.clip(centers[:, 0] * sx, 0, heatmap_size[0] - 1e-4)
    centers[:, 1] = np.clip(centers[:, 1] * sy, 0, heatmap_size[1] - 1e-4)

    jmap = np.zeros((1, ) + heatmap_size[::-1], dtype=np.float32)
    joff = np.zeros((2, ) + heatmap_size[::-1], dtype=np.float32)
    cmap = np.zeros((1, ) + heatmap_size[::-1], dtype=np.float32)
    coff = np.zeros((2, ) + heatmap_size[::-1], dtype=np.float32)
    lvec = np.zeros((
        (n_pts // 2) * 2,
        2,
    ) + heatmap_size[::-1],
                    dtype=np.float32)
    lmap = np.zeros((1, ) + heatmap_size[::-1], dtype=np.float32)

    juncs = dict()
    lpos = lines.copy()
    lneg, scores = [], []
    linds = []

    if n_pts % 2 == 1:
        lines = np.delete(lines, n_pts // 2, axis=1)

    def to_int(x):
        return tuple(map(int, x))

    def add_junc(juncs, junc):
        ind = len(juncs)
        if junc in juncs:
            ind = juncs[junc]
        else:
            juncs[junc] = ind
        return ind

    for c, pts in zip(centers, lines):
        v0, v1 = pts[0], pts[-1]
        lind = [add_junc(juncs, tuple(v0)), add_junc(juncs, tuple(v1))]
        linds.append(lind)

        cint = to_int(c)
        vint0 = to_int(v0)
        vint1 = to_int(v1)
        jmap[0, vint0[1], vint0[0]] = 1
        jmap[0, vint1[1], vint1[0]] = 1
        joff[:, vint0[1], vint0[0]] = v0 - vint0 - 0.5
        joff[:, vint1[1], vint1[0]] = v1 - vint1 - 0.5
        cmap[0, cint[1], cint[0]] = 1
        coff[:, cint[1], cint[0]] = c - cint - 0.5
        lvec[:, :, cint[1], cint[0]] = pts - c

    lvec = lvec.reshape((-1, ) + heatmap_size[::-1])
    lmap[0] = bez.insert_line(lmap[0], lpos, color=255) / 255.0
    juncs = np.asarray([np.array(junc) for junc in list(juncs.keys())])
    linds = np.asarray(linds)

    llmap = zoom(lmap[0], [0.5, 0.5])
    lineset = set([frozenset(l) for l in linds])
    for i0, i1 in combinations(range(len(juncs)), 2):
        if frozenset([i0, i1]) not in lineset:
            v0, v1 = juncs[i0], juncs[i1]
            lneg.append([v0, v1])
            v0, v1 = v0 / 2.0, v1 / 2.0
            rr, cc, value = skimage.draw.line_aa(int(v0[1]), int(v0[0]),
                                                 int(v1[1]), int(v1[0]))
            scores.append(np.average(np.minimum(value, llmap[rr, cc])))

    lpos = np.asarray(lpos)
    lneg = np.asarray(lneg)
    scores = np.asarray(scores)
    indices = np.argsort(-scores)[:2000]
    lneg = lneg[indices]

    np.savez_compressed(f'{prefix}.npz',
                        junc=juncs,
                        lpos=lpos,
                        lneg=lneg,
                        jmap=jmap,
                        joff=joff,
                        cmap=cmap,
                        coff=coff,
                        lvec=lvec,
                        lmap=lmap)
    cv2.imwrite(f'{prefix}.png', image)