f, datainfo.datafiles[0], sensor, nclusters, globalc=args.globalclust) data = datainfo.get_peaks_resample_PCA(f, datainfo.datafiles[0], sensor) for i in range(nclusters): variance[i] = np.std(data[labels == i], axis=0) lsignals = [] mhisto = np.zeros((len(datainfo.datafiles) // batches, nclusters)) cbatch = [c for c in enumerate(datainfo.datafiles)] lbatch = batchify(cbatch, batches) for nf, btch in enumerate(lbatch): npeaks = 0 histo = np.zeros(nclusters) for _, dfile in btch: labels = datainfo.compute_peaks_labels( f, dfile, sensor, nclusters, globalc=args.globalclust) npeaks += len(labels) for i in labels: mhisto[nf, i] += 1.0 mhisto[nf] /= npeaks matplotlib.rcParams.update({'font.size': 20}) fig = plt.figure() fig.suptitle(sensorname, fontsize=50)
f = datainfo.open_experiment_data(mode='r') for sensor, nclusters in zip(datainfo.sensors, datainfo.clusters): print(sensor, nclusters) if args.globalclust: centroids = datainfo.get_peaks_global_clustering_centroids(f, sensor, nclusters) else: centroids = datainfo.get_peaks_clustering_centroids(f, datainfo.datafiles[0], sensor, nclusters) lsignals = [] mhisto = np.zeros((len(datainfo.datafiles)//batches, nclusters)) cbatch = [c for c in enumerate(datainfo.datafiles)] lbatch = batchify(cbatch, batches) for nf, btch in enumerate(lbatch): npeaks = 0 histo = np.zeros(nclusters) for _, dfile in btch: labels = datainfo.compute_peaks_labels(f, dfile, sensor, nclusters, globalc=args.globalclust) npeaks += len(labels) for i in labels: mhisto[nf, i] += 1.0 mhisto[nf] /= npeaks matplotlib.rcParams.update({'font.size': 25}) fig = plt.figure() fig.set_figwidth(24) fig.set_figheight(12)
lexperiments = ['e150514'] mbasal = 'meanfirst' # 'alternative' altsmooth = False args.wavy = True args.extra = True print('Begin Smoothing: ', time.ctime()) for expname in lexperiments: datainfo = experiments[expname] if not args.extra: lsensors = datainfo.sensors else: lsensors = datainfo.extrasensors batches = batchify([i for i in product(datainfo.datafiles, lsensors)], njobs) if 'recenter' in datainfo.peaks_smooth: # If recenter is true a subwindow of the data has to be indicated to be able to re-crop the signal recenter = datainfo.peaks_smooth['recenter'] wtsel = datainfo.peaks_smooth['wtsel'] else: recenter = False wtsel = None for batch in batches: # Paralelize PCA computation res = Parallel(n_jobs=-1)( delayed(do_the_job)(dfile, sensor, recenter=False, wtsel=None, clean=False, mbasal=mbasal, alt_smooth=altsmooth, wavy=args.wavy) for dfile, sensor in batch)
mbasal = 'meanfirst' # 'globalmeanfirst' # 'alternative' args.altsmooth = False args.wavy = False args.extra = False args.pca = 0.98 print('Begin Smoothing: ', time.ctime()) for expname in lexperiments: datainfo = experiments[expname] if not args.extra: lsensors = datainfo.sensors else: lsensors = datainfo.extrasensors batches = batchify([i for i in product(datainfo.datafiles, lsensors)], njobs) if 'recenter' in datainfo.peaks_smooth: # If recenter is true a subwindow of the data has to be indicated to be able to re-crop the signal recenter = datainfo.peaks_smooth['recenter'] wtsel = datainfo.peaks_smooth['wtsel'] else: recenter = False wtsel = None for batch in batches: # Paralelize PCA computation res = Parallel(n_jobs=-1)( delayed(do_the_job)(dfile, sensor, recenter=False,