Example #1
0
    def detect_contours(self, image, tr_pred, tcl_pred, sin_pred, cos_pred,
                        radii_pred):
        """
        Input: FCN output, Output: text detection after post-processing

        :param image: (np.array) input image (3, H, W)
        :param tr_pred: (np.array), text region prediction, (2, H, W)
        :param tcl_pred: (np.array), text center line prediction, (2, H, W)
        :param sin_pred: (np.array), sin prediction, (H, W)
        :param cos_pred: (np.array), cos line prediction, (H, W)
        :param radii_pred: (np.array), radii prediction, (H, W)

        :return:
            (list), tcl array: (n, 3), 3 denotes (x, y, radii)
        """

        # thresholding
        tr_pred_mask = tr_pred[1] > self.tr_thresh
        tcl_pred_mask = tcl_pred[1] > self.tcl_thresh

        # multiply TR and TCL
        tcl_mask = tcl_pred_mask * tr_pred_mask

        # regularize
        sin_pred, cos_pred = regularize_sin_cos(sin_pred, cos_pred)

        # find tcl in each predicted mask
        detect_result = self.build_tcl(tcl_mask, sin_pred, cos_pred,
                                       radii_pred)

        return self.postprocessing(image, detect_result, tr_pred_mask)
Example #2
0
    def detect(self, tr_pred, tcl_pred, sin_pred, cos_pred, radii_pred):

        # thresholding
        tr_pred_mask = tr_pred[1] > self.tr_thresh
        tcl_pred_mask = tcl_pred[1] > self.tcl_thresh

        # multiply TR and TCL
        tcl = tcl_pred_mask * tr_pred_mask

        # regularize
        sin_pred, cos_pred = regularize_sin_cos(sin_pred, cos_pred)

        # find tcl in each predicted mask
        detect_result = self.build_tcl(tcl, sin_pred, cos_pred, radii_pred)

        return detect_result
Example #3
0
    for idx in range(0, len(trainset)):
        t0 = time.time()
        img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map, gt_roi = trainset[
            idx]
        img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map, gt_roi \
            = map(lambda x: x.cpu().numpy(), (img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map, gt_roi))

        img = img.transpose(1, 2, 0)
        img = ((img * stds + means) * 255).astype(np.uint8)
        print(idx, img.shape)
        top_map = radius_map[:, :, 0]
        bot_map = radius_map[:, :, 1]

        print(radius_map.shape)

        sin_map, cos_map = regularize_sin_cos(sin_map, cos_map)
        ret, labels = cv2.connectedComponents(tcl_mask[:, :,
                                                       0].astype(np.uint8),
                                              connectivity=8)
        cv2.imshow(
            "labels0",
            cav.heatmap(np.array(labels * 255 / np.max(labels),
                                 dtype=np.uint8)))
        print(np.sum(tcl_mask[:, :, 1]))

        t0 = time.time()
        for bbox_idx in range(1, ret):
            bbox_mask = labels == bbox_idx
            text_map = tcl_mask[:, :, 0] * bbox_mask

            boxes = bbox_transfor_inv(radius_map,
Example #4
0
    def proposals_layer(self, tr_map, tcl_map, radii_map, sin_map, cos_map):

        tr_pred_mask = tr_map > self.tr_thresh
        tcl_pred_mask = tcl_map > self.tcl_thresh

        # multiply TR and TCL
        tcl_mask = tcl_pred_mask * tr_pred_mask

        # regularize
        sin_map, cos_map = regularize_sin_cos(sin_map, cos_map)

        # find disjoint regions
        tcl_mask = fill_hole(tcl_mask)
        tcl_contours, _ = cv2.findContours(tcl_mask.astype(np.uint8),
                                           cv2.RETR_TREE,
                                           cv2.CHAIN_APPROX_SIMPLE)

        mask = np.zeros_like(tcl_mask)
        proposals = None
        for cont in tcl_contours:
            deal_map = mask.copy()
            cv2.drawContours(deal_map, [cont], -1, 1, -1)
            if deal_map.sum() <= 100:
                continue
            text_map = tr_map * deal_map
            # ## 1. Reverse generation of box
            bboxs = bbox_transfor_inv(radii_map,
                                      sin_map,
                                      cos_map,
                                      text_map,
                                      wclip=self.clip,
                                      expend=self.expend)

            # ## 3. local nms
            bboxs = lanms.merge_quadrangle_n9(bboxs.astype('float32'), 0.25)

            reconstruct_mask = mask.copy()
            boxes = bboxs[:, :8].reshape((-1, 4, 2)).astype(np.int32)

            cv2.drawContours(reconstruct_mask, boxes, -1, 1, -1)
            if (reconstruct_mask *
                    tr_pred_mask).sum() < reconstruct_mask.sum() * 0.5:
                continue

            if proposals is None:
                proposals = bboxs
            else:
                proposals = np.concatenate([proposals, bboxs], axis=0)

        if proposals is None or proposals.shape[0] <= 0:
            return None, None

        # ## 5. generate cluster label
        cxy = np.mean(proposals[:, :8].reshape((-1, 4, 2)),
                      axis=1).astype(np.int32)

        # ## 6. Geometric features
        gh = (radii_map[:, :, 0] + radii_map[:, :, 1])
        h_map = gh[cxy[:, 1], cxy[:, 0]]
        w_map = np.clip(h_map // 2, 2 * self.clip[0], 2 * self.clip[1])
        c_map = cos_map[cxy[:, 1], cxy[:, 0]]
        s_map = sin_map[cxy[:, 1], cxy[:, 0]]
        geo_map = np.stack([cxy[:, 0], cxy[:, 1], h_map, w_map, c_map, s_map],
                           axis=1)

        return geo_map, proposals
Example #5
0
    def detect_contours(self, tr_pred, tcl_pred, sin_pred, cos_pred, radii_pred):

        # thresholding
        tr_pred_mask = tr_pred > self.tr_thresh
        tcl_pred_mask = tcl_pred > self.tcl_thresh

        # multiply TR and TCL
        tcl_mask = tcl_pred_mask * tr_pred_mask

        # regularize
        sin_pred, cos_pred = regularize_sin_cos(sin_pred, cos_pred)

        # find disjoint regions
        tcl_mask = fill_hole(tcl_mask)
        tcl_contours, _ = cv2.findContours(tcl_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

        mask = np.zeros_like(tcl_mask)
        bbox_contours = list()
        for cont in tcl_contours:
            deal_map = mask.copy()
            cv2.drawContours(deal_map, [cont], -1, 1, -1)
            if deal_map.sum() <= 100:
                continue
            text_map = tr_pred * deal_map
            bboxs = self.bbox_transfor_inv(radii_pred, sin_pred, cos_pred, text_map, wclip=(4, 12))
            # nms
            boxes = lanms.merge_quadrangle_n9(bboxs.astype('float32'), 0.25)
            boxes = boxes[:, :8].reshape((-1, 4, 2)).astype(np.int32)
            boundary_point = None
            if boxes.shape[0] > 1:
                center = np.mean(boxes, axis=1).astype(np.int32).tolist()
                paths, routes_path = minConnectPath(center)
                boxes = boxes[routes_path]
                top = np.mean(boxes[:, 0:2, :], axis=1).astype(np.int32).tolist()
                bot = np.mean(boxes[:, 2:4, :], axis=1).astype(np.int32).tolist()
                edge0 = self.select_edge(top + bot[::-1], boxes[0])
                edge1 = self.select_edge(top + bot[::-1], boxes[-1])
                if edge0 is not None:
                    top.insert(0, edge0[0])
                    bot.insert(0, edge0[1])
                if edge1 is not None:
                    top.append(edge1[0])
                    bot.append(edge1[1])
                boundary_point = np.array(top + bot[::-1])

            elif boxes.shape[0] == 1:
                top = boxes[0, 0:2, :].astype(np.int32).tolist()
                bot = boxes[0, 2:4:-1, :].astype(np.int32).tolist()
                boundary_point = np.array(top + bot)

            if boundary_point is None:
                continue
            reconstruct_mask = mask.copy()
            cv2.drawContours(reconstruct_mask, [boundary_point], -1, 1, -1)
            if (reconstruct_mask * tr_pred_mask).sum() < reconstruct_mask.sum() * 0.5:
                continue
            # if reconstruct_mask.sum() < 200:
            #     continue

            rect = cv2.minAreaRect(boundary_point)
            if min(rect[1][0], rect[1][1]) < 10 or rect[1][0] * rect[1][1] < 300:
                continue

            bbox_contours.append([boundary_point, np.array(np.stack([top, bot], axis=1))])

        return bbox_contours