def detect_contours(self, image, tr_pred, tcl_pred, sin_pred, cos_pred, radii_pred): """ Input: FCN output, Output: text detection after post-processing :param image: (np.array) input image (3, H, W) :param tr_pred: (np.array), text region prediction, (2, H, W) :param tcl_pred: (np.array), text center line prediction, (2, H, W) :param sin_pred: (np.array), sin prediction, (H, W) :param cos_pred: (np.array), cos line prediction, (H, W) :param radii_pred: (np.array), radii prediction, (H, W) :return: (list), tcl array: (n, 3), 3 denotes (x, y, radii) """ # thresholding tr_pred_mask = tr_pred[1] > self.tr_thresh tcl_pred_mask = tcl_pred[1] > self.tcl_thresh # multiply TR and TCL tcl_mask = tcl_pred_mask * tr_pred_mask # regularize sin_pred, cos_pred = regularize_sin_cos(sin_pred, cos_pred) # find tcl in each predicted mask detect_result = self.build_tcl(tcl_mask, sin_pred, cos_pred, radii_pred) return self.postprocessing(image, detect_result, tr_pred_mask)
def detect(self, tr_pred, tcl_pred, sin_pred, cos_pred, radii_pred): # thresholding tr_pred_mask = tr_pred[1] > self.tr_thresh tcl_pred_mask = tcl_pred[1] > self.tcl_thresh # multiply TR and TCL tcl = tcl_pred_mask * tr_pred_mask # regularize sin_pred, cos_pred = regularize_sin_cos(sin_pred, cos_pred) # find tcl in each predicted mask detect_result = self.build_tcl(tcl, sin_pred, cos_pred, radii_pred) return detect_result
for idx in range(0, len(trainset)): t0 = time.time() img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map, gt_roi = trainset[ idx] img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map, gt_roi \ = map(lambda x: x.cpu().numpy(), (img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map, gt_roi)) img = img.transpose(1, 2, 0) img = ((img * stds + means) * 255).astype(np.uint8) print(idx, img.shape) top_map = radius_map[:, :, 0] bot_map = radius_map[:, :, 1] print(radius_map.shape) sin_map, cos_map = regularize_sin_cos(sin_map, cos_map) ret, labels = cv2.connectedComponents(tcl_mask[:, :, 0].astype(np.uint8), connectivity=8) cv2.imshow( "labels0", cav.heatmap(np.array(labels * 255 / np.max(labels), dtype=np.uint8))) print(np.sum(tcl_mask[:, :, 1])) t0 = time.time() for bbox_idx in range(1, ret): bbox_mask = labels == bbox_idx text_map = tcl_mask[:, :, 0] * bbox_mask boxes = bbox_transfor_inv(radius_map,
def proposals_layer(self, tr_map, tcl_map, radii_map, sin_map, cos_map): tr_pred_mask = tr_map > self.tr_thresh tcl_pred_mask = tcl_map > self.tcl_thresh # multiply TR and TCL tcl_mask = tcl_pred_mask * tr_pred_mask # regularize sin_map, cos_map = regularize_sin_cos(sin_map, cos_map) # find disjoint regions tcl_mask = fill_hole(tcl_mask) tcl_contours, _ = cv2.findContours(tcl_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) mask = np.zeros_like(tcl_mask) proposals = None for cont in tcl_contours: deal_map = mask.copy() cv2.drawContours(deal_map, [cont], -1, 1, -1) if deal_map.sum() <= 100: continue text_map = tr_map * deal_map # ## 1. Reverse generation of box bboxs = bbox_transfor_inv(radii_map, sin_map, cos_map, text_map, wclip=self.clip, expend=self.expend) # ## 3. local nms bboxs = lanms.merge_quadrangle_n9(bboxs.astype('float32'), 0.25) reconstruct_mask = mask.copy() boxes = bboxs[:, :8].reshape((-1, 4, 2)).astype(np.int32) cv2.drawContours(reconstruct_mask, boxes, -1, 1, -1) if (reconstruct_mask * tr_pred_mask).sum() < reconstruct_mask.sum() * 0.5: continue if proposals is None: proposals = bboxs else: proposals = np.concatenate([proposals, bboxs], axis=0) if proposals is None or proposals.shape[0] <= 0: return None, None # ## 5. generate cluster label cxy = np.mean(proposals[:, :8].reshape((-1, 4, 2)), axis=1).astype(np.int32) # ## 6. Geometric features gh = (radii_map[:, :, 0] + radii_map[:, :, 1]) h_map = gh[cxy[:, 1], cxy[:, 0]] w_map = np.clip(h_map // 2, 2 * self.clip[0], 2 * self.clip[1]) c_map = cos_map[cxy[:, 1], cxy[:, 0]] s_map = sin_map[cxy[:, 1], cxy[:, 0]] geo_map = np.stack([cxy[:, 0], cxy[:, 1], h_map, w_map, c_map, s_map], axis=1) return geo_map, proposals
def detect_contours(self, tr_pred, tcl_pred, sin_pred, cos_pred, radii_pred): # thresholding tr_pred_mask = tr_pred > self.tr_thresh tcl_pred_mask = tcl_pred > self.tcl_thresh # multiply TR and TCL tcl_mask = tcl_pred_mask * tr_pred_mask # regularize sin_pred, cos_pred = regularize_sin_cos(sin_pred, cos_pred) # find disjoint regions tcl_mask = fill_hole(tcl_mask) tcl_contours, _ = cv2.findContours(tcl_mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) mask = np.zeros_like(tcl_mask) bbox_contours = list() for cont in tcl_contours: deal_map = mask.copy() cv2.drawContours(deal_map, [cont], -1, 1, -1) if deal_map.sum() <= 100: continue text_map = tr_pred * deal_map bboxs = self.bbox_transfor_inv(radii_pred, sin_pred, cos_pred, text_map, wclip=(4, 12)) # nms boxes = lanms.merge_quadrangle_n9(bboxs.astype('float32'), 0.25) boxes = boxes[:, :8].reshape((-1, 4, 2)).astype(np.int32) boundary_point = None if boxes.shape[0] > 1: center = np.mean(boxes, axis=1).astype(np.int32).tolist() paths, routes_path = minConnectPath(center) boxes = boxes[routes_path] top = np.mean(boxes[:, 0:2, :], axis=1).astype(np.int32).tolist() bot = np.mean(boxes[:, 2:4, :], axis=1).astype(np.int32).tolist() edge0 = self.select_edge(top + bot[::-1], boxes[0]) edge1 = self.select_edge(top + bot[::-1], boxes[-1]) if edge0 is not None: top.insert(0, edge0[0]) bot.insert(0, edge0[1]) if edge1 is not None: top.append(edge1[0]) bot.append(edge1[1]) boundary_point = np.array(top + bot[::-1]) elif boxes.shape[0] == 1: top = boxes[0, 0:2, :].astype(np.int32).tolist() bot = boxes[0, 2:4:-1, :].astype(np.int32).tolist() boundary_point = np.array(top + bot) if boundary_point is None: continue reconstruct_mask = mask.copy() cv2.drawContours(reconstruct_mask, [boundary_point], -1, 1, -1) if (reconstruct_mask * tr_pred_mask).sum() < reconstruct_mask.sum() * 0.5: continue # if reconstruct_mask.sum() < 200: # continue rect = cv2.minAreaRect(boundary_point) if min(rect[1][0], rect[1][1]) < 10 or rect[1][0] * rect[1][1] < 300: continue bbox_contours.append([boundary_point, np.array(np.stack([top, bot], axis=1))]) return bbox_contours