def get_code(self, tree, feature_names, class_names, filename, data_type): left = tree.tree_.children_left right = tree.tree_.children_right threshold = tree.tree_.threshold value = tree.tree_.value features = [] for i in tree.tree_.feature: if i != -2 or i <= 200: features.append(feature_names[i]) rules_array = [] def recurse(left, right, threshold, features, node): if (threshold[node] != -2): line = "IF ( " + features[node] + " <= " + str( threshold[node]) + " ) {" rules_array.append(line) if left[node] != -1: recurse(left, right, threshold, features, left[node]) line = "} ELSE {" rules_array.append(line) if right[node] != -1: recurse(left, right, threshold, features, right[node]) line = "}" rules_array.append(line) else: if value[node][0][0] >= value[node][0][1]: line = "return", class_names[0] rules_array.append(line) else: line = "return", class_names[1] rules_array.append(line) recurse(left, right, threshold, features, 0) dt.write1dArray( rules_array, "../data/" + data_type + "/rules/text_rules/" + filename + ".txt") cleaned = jsbeautifier.beautify_file("../data/" + data_type + "/rules/text_rules/" + filename + ".txt") try: file = open( "../data/" + data_type + "/rules/text_rules/" + filename + ".txt", "w") file.write(cleaned) file.close() file = open( "../data/" + data_type + "/rules/tree_temp/" + filename + ".txt", "w") file.write(cleaned) file.close() except OSError: print("Couldn't save")
def get_code(self, tree, feature_names, class_names, filename, data_type): rules_array = [] dt.write1dArray( rules_array, "../data/" + data_type + "/rules/text_rules/" + filename + ".txt") # Probably not needed cleaned = jsbeautifier.beautify_file("../data/" + data_type + "/rules/text_rules/" + filename + ".txt") file = open( "../data/" + data_type + "/rules/text_rules/" + filename + ".txt", "w") file.write(cleaned) file.close()
def getNDCG(rankings_fn, fn, data_type, bow_fn, ppmi_fn, lowest_count, rewrite_files=False, highest_count=0, classification=""): # Check if the NDCG scores have already been calculated, if they have then skip. ndcg_fn = "../data/" + data_type + "/ndcg/" + fn + ".txt" all_fns = [ndcg_fn] if dt.allFnsAlreadyExist(all_fns) and not rewrite_files: print("Skipping task", getNDCG.__name__) return else: print("Running task", getNDCG.__name__) # Get the file names for the PPMI values for every word and a list of words ("names") names = dt.import1dArray("../data/" + data_type + "/bow/names/" + bow_fn) ppmi = dt.import2dArray("../data/" + data_type + "/bow/ppmi/" + ppmi_fn) # Process the rankings and the PPMI line-by-line so as to not run out of memory ndcg_a = [] #spearman_a = [] with open(rankings_fn) as rankings: r = 0 for lr in rankings: for lp in ppmi: # Get the plain-number ranking of the rankings, e.g. "1, 4, 3, 50" sorted_indices = np.argsort( list(map(float, lr.strip().split())))[::-1] # Convert PPMI scores to floats # Get the NDCG score for the PPMI score, which is a valuation, compared to the indice of the rank ndcg = ndcg_from_ranking(lp, sorted_indices) # Add to array and print ndcg_a.append(ndcg) print("ndcg", ndcg, names[r], r) """ smr = spearmanr(ppmi_indices, sorted_indices)[1] spearman_a.append(smr) print("spearman", smr, names[r], r) """ r += 1 break # Save NDCG dt.write1dArray(ndcg_a, ndcg_fn)
def makePPMI(names_fn, scores_fn, amt, data_type, ppmi_fn, name_fn): scores = np.asarray(dt.import1dArray(scores_fn, "f")) names = np.asarray(dt.import1dArray(names_fn)) names = names[np.flipud(np.argsort(scores))][:amt] if dt.allFnsAlreadyExist([ppmi_fn, name_fn]) is False: ppmi_file = [] for name in names: ppmi_file.append( dt.import1dArray("../data/" + data_type + "/bow/ppmi/" + "class-" + name + "-100-10-all")) dt.write2dArray(ppmi_file, ppmi_fn) dt.write1dArray(names, name_fn) else: print("already_made PPMI of this size")
def __init__(self, features_fn, classes_fn, class_names_fn, cluster_names_fn, filename, max_depth=None, balance=None, criterion="entropy", save_details=False, data_type="movies", cv_splits=5, csv_fn="../data/temp/no_csv_provided.csv", rewrite_files=True, split_to_use=-1, development=False, limit_entities=False, limited_label_fn=None, vector_names_fn=None, pruning=1, save_results_so_far=False): vectors = np.asarray(dt.import2dArray(features_fn)).transpose() labels = np.asarray(dt.import2dArray(classes_fn, "i")) print("vectors", len(vectors), len(vectors[0])) print("labels", len(labels), len(labels[0])) print("vectors", len(vectors), len(vectors[0])) cluster_names = dt.import1dArray(cluster_names_fn) label_names = dt.import1dArray(class_names_fn) all_fns = [] file_names = ['ACC J48' + filename, 'F1 J48' + filename] acc_fn = '../data/' + data_type + '/rules/tree_scores/' + file_names[ 0] + '.scores' f1_fn = '../data/' + data_type + '/rules/tree_scores/' + file_names[ 1] + '.scores' all_fns.append(acc_fn) all_fns.append(f1_fn) all_fns.append(csv_fn) print(dt.allFnsAlreadyExist(all_fns), rewrite_files) if dt.allFnsAlreadyExist( all_fns) and not rewrite_files or save_results_so_far: print("Skipping task", "Weka Tree") return else: print("Running task", "Weka Tree") for l in range(len(cluster_names)): cluster_names[l] = cluster_names[l].split()[0] """ for l in range(len(label_names)): if label_names[l][:6] == "class-": label_names[l] = label_names[l][6:] """ f1_array = [] accuracy_array = [] labels = labels.transpose() print("labels transposed") print("labels", len(labels), len(labels[0])) if limit_entities is False: vector_names = dt.import1dArray(vector_names_fn) limited_labels = dt.import1dArray(limited_label_fn) vectors = np.asarray( dt.match_entities(vectors, limited_labels, vector_names)) all_y_test = [] all_predictions = [] for l in range(len(labels)): if balance: new_vectors, new_labels = dt.balanceClasses(vectors, labels[l]) else: new_vectors = vectors new_labels = labels[l] # Select training data with cross validation ac_y_test = [] ac_y_train = [] ac_x_train = [] ac_x_test = [] ac_y_dev = [] ac_x_dev = [] cv_f1 = [] cv_acc = [] if cv_splits == 1: kf = KFold(n_splits=3, shuffle=False, random_state=None) else: kf = KFold(n_splits=cv_splits, shuffle=False, random_state=None) c = 0 for train, test in kf.split(new_vectors): if split_to_use > -1: if c != split_to_use: c += 1 continue ac_y_test.append(new_labels[test]) ac_y_train.append(new_labels[train[int(len(train) * 0.2):]]) val = int(len(train) * 0.2) t_val = train[val:] nv_t_val = new_vectors[t_val] ac_x_train.append(nv_t_val) ac_x_test.append(new_vectors[test]) ac_x_dev.append(new_vectors[train[:int(len(train) * 0.2)]]) ac_y_dev.append(new_labels[train[:int(len(train) * 0.2)]]) c += 1 if cv_splits == 1: break predictions = [] rules = [] if development: ac_x_test = np.copy(np.asarray(ac_x_dev)) ac_y_test = np.copy(np.asarray(ac_y_dev)) train_fn = "../data/" + data_type + "/weka/data/" + filename + "Train.txt" test_fn = "../data/" + data_type + "/weka/data/" + filename + "Test.txt" for splits in range(len(ac_y_test)): # Get the weka predictions dt.writeArff(ac_x_train[splits], [ac_y_train[splits]], [label_names[splits]], train_fn, header=True) dt.writeArff(ac_x_test[splits], [ac_y_test[splits]], [label_names[splits]], test_fn, header=True) prediction, rule = self.getWekaPredictions( train_fn + label_names[splits] + ".arff", test_fn + label_names[splits] + ".arff", save_details, pruning) predictions.append(prediction) rules.append(rule) for i in range(len(predictions)): if len(predictions) == 1: all_y_test.append(ac_y_test[i]) all_predictions.append(predictions[i]) f1 = f1_score(ac_y_test[i], predictions[i], average="binary") accuracy = accuracy_score(ac_y_test[i], predictions[i]) cv_f1.append(f1) cv_acc.append(accuracy) scores = [[label_names[l], "f1", f1, "accuracy", accuracy]] print(scores) # Export a tree for each label predicted by the clf, not sure if this is needed... if save_details: data_fn = "../data/" + data_type + "/rules/weka_rules/" + label_names[ l] + " " + filename + ".txt" class_names = [label_names[l], "NOT " + label_names[l]] #self.get_code(clf, cluster_names, class_names, label_names[l] + " " + filename, data_type) dt.write1dArray(rules[i].split("\n"), data_fn) dot_file = dt.import1dArray(data_fn) new_dot_file = [] for line in dot_file: if "->" not in line and "label" in line and '"t ' not in line and '"f ' not in line: line = line.split('"') line[1] = '"' + cluster_names[int(line[1])] + '"' line = "".join(line) new_dot_file.append(line) dt.write1dArray(new_dot_file, data_fn) graph = pydot.graph_from_dot_file(data_fn) graph.write_png("../data/" + data_type + "/rules/weka_images/" + label_names[l] + " " + filename + ".png") f1_array.append(np.average(np.asarray(cv_f1))) accuracy_array.append(np.average(np.asarray(cv_acc))) accuracy_array = np.asarray(accuracy_array) accuracy_average = np.average(accuracy_array) accuracy_array = accuracy_array.tolist() f1_array = np.asarray(f1_array) f1_average = np.average(f1_array) f1_array = f1_array.tolist() micro_average = f1_score(np.asarray(all_y_test), np.asarray(all_predictions), average="micro") print("Micro F1", micro_average) accuracy_array.append(accuracy_average) accuracy_array.append(0.0) f1_array.append(f1_average) f1_array.append(micro_average) scores = [accuracy_array, f1_array] dt.write1dArray(accuracy_array, acc_fn) dt.write1dArray(f1_array, f1_fn) print(csv_fn) if dt.fileExists(csv_fn): print("File exists, writing to csv") try: dt.write_to_csv(csv_fn, file_names, scores) except PermissionError: print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE") print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE") print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE") print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE") print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE") print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE") dt.write_to_csv( csv_fn[:len(csv_fn) - 4] + str(random.random()) + "FAIL.csv", file_names, scores) else: print("File does not exist, recreating csv") key = [] for l in label_names: key.append(l) key.append("AVERAGE") key.append("MICRO AVERAGE") dt.write_csv(csv_fn, file_names, scores, key)
def main(data_type, vector_size, window_size, min_count, sampling_threshold, negative_size, train_epoch, dm, worker_count, train_wv, concatenate_wv, use_hierarchical_softmax): file_name = "Doc2Vec" + " VS" + str(vector_size) + " WS" + str(window_size) + " MC" + str(min_count) + " ST" + str( sampling_threshold) + \ " NS" + str(negative_size) + " TE" + str(train_epoch) + " DM" + str(dm) + " WC" + str( worker_count) + "spacy" " NS" + str(negative_size) + " TE" + str(train_epoch) + " DM" + str(dm) + " WC" + str(worker_count) + \ " TW" + str(train_wv) + " CW" + str(concatenate_wv) + " HS" + str(use_hierarchical_softmax) corpus_fn = "../data/raw/" + data_type + "/corpus_processed.txt" if os.path.exists(corpus_fn) is False: x_train = np.load("../data/raw/" + data_type + "/x_train_w.npy") x_test = np.load("../data/raw/" + data_type + "/x_test_w.npy") corpus = np.concatenate((x_train, x_test), axis=0) text_corpus = np.empty(len(corpus), dtype=np.object) for i in range(len(corpus)): text_corpus[i] = " ".join(corpus[i]) print(text_corpus[i]) dt.write1dArray(text_corpus, corpus_fn) embedding_fn = "/home/tom/Downloads/glove.6B/glove.6B.300d.txt" model_fn = "../data/" + data_type + "/doc2vec/" + file_name + ".bin" vector_fn = "../data/" + data_type + "/nnet/spaces/" + file_name + ".npy" score_fn = "../data/" + data_type + "/doc2vec/" + file_name + "catacc.score" if os.path.exists(model_fn): print("Imported model") model = g.utils.SaveLoad.load(model_fn) elif file_name[:7] == "Doc2Vec": model = doc2Vec(embedding_fn, corpus_fn, vector_size, window_size, min_count, sampling_threshold, negative_size, train_epoch, dm, worker_count, train_wv, concatenate_wv, use_hierarchical_softmax) model.save(model_fn) if os.path.exists(vector_fn) is False: vectors = [] for d in range(len(model.docvecs)): vectors.append(model.docvecs[d]) np.save(vector_fn, vectors) else: print("Imported vectors") vectors = np.load(vector_fn) if os.path.exists(score_fn) is False or file_name[:6] != "Doc2Vec": print("Getting score") if data_type == "sentiment": classes = dt.import1dArray( "../data/" + data_type + "/classify/" + data_type + "/class-all", "i") x_train, y_train, x_test, y_test = sentiment.getSplits( vectors, classes) scores = linearSVMScore(x_train, y_train, x_test, y_test) else: classes = dt.import2dArray( "../data/" + data_type + "/classify/" + data_type + "/class-all", "i") x_train, y_train, x_test, y_test = newsgroups.getSplits( vectors, classes) scores = multiClassLinearSVM(x_train, y_train, x_test, y_test) print(scores) dt.write1dArray(scores, score_fn)
def __init__(self, vector_path, class_path, property_names_fn, file_name, svm_type, training_size=10000, lowest_count=200, highest_count=21470000, get_kappa=True, get_f1=True, single_class=True, data_type="movies", getting_directions=True, threads=1, chunk_amt=0, chunk_id=0, rewrite_files=False, classification="all", loc="../data/", logistic_regression=False, sparse_array_fn=None, only_these_fn=None): self.get_kappa = True self.get_f1 = get_f1 self.data_type = data_type self.classification = classification self.lowest_amt = lowest_count self.higher_amt = highest_count if chunk_amt > 0: file_name = file_name + " CID" + str(chunk_id) + " CAMT" + str( chunk_amt) directions_fn = loc + data_type + "/svm/directions/" + file_name + ".txt" ktau_scores_fn = loc + data_type + "/svm/f1/" + file_name + ".txt" kappa_fn = loc + data_type + "/svm/kappa/" + file_name + ".txt" acc_fn = loc + data_type + "/svm/acc/" + file_name + ".txt" TP_fn = loc + data_type + "/svm/stats/TP " + file_name + ".txt" FP_fn = loc + data_type + "/svm/stats/FP " + file_name + ".txt" TN_fn = loc + data_type + "/svm/stats/TN " + file_name + ".txt" FN_fn = loc + data_type + "/svm/stats/FN " + file_name + ".txt" all_fns = [directions_fn, kappa_fn] if dt.allFnsAlreadyExist(all_fns) and not rewrite_files: print("Skipping task", "getSVMResults") return else: print("Running task", "getSVMResults") y_train = 0 y_test = 0 vectors = np.asarray(dt.import2dArray(vector_path)) print("imported vectors") if not getting_directions: classes = np.asarray(dt.import2dArray(class_path)) print("imported classes") property_names = dt.import1dArray(property_names_fn) print("imported propery names") if chunk_amt > 0: if chunk_id == chunk_amt - 1: chunk = int(len(property_names) / chunk_amt) multiply = chunk_amt - 1 property_names = property_names[chunk * multiply:] else: property_names = dt.chunks( property_names, int( (len(property_names) / chunk_amt)))[chunk_id] if sparse_array_fn is not None: sparse_array = dt.import2dArray(sparse_array_fn) else: sparse_array = None if sparse_array is not None: for s in range(len(sparse_array)): if len(np.nonzero(sparse_array[s])[0]) <= 1: print("WILL FAIL", s, len(np.nonzero(sparse_array[s])[0])) else: print(len(np.nonzero(sparse_array[s])[0])) if not getting_directions: x_train, x_test, y_train, y_test = train_test_split(vectors, classes, test_size=0.3, random_state=0) else: x_train = vectors x_test = vectors if get_f1: y_train = y_train.transpose() y_test = y_test.transpose() print("transpoosed") self.x_train = x_train self.x_test = x_test self.y_train = y_train self.y_test = y_test if only_these_fn is not None: only_these = dt.import1dArray(only_these_fn, "s") inds = [] for s in range(len(property_names)): for o in only_these: if property_names[s] == o: inds.append(s) break sparse_array = sparse_array[inds] property_names = property_names[inds] if self.get_f1 is False: print("running svms") kappa_scores, directions, f1_scores, property_names, accs, TPs, FPs, TNs, FNs = self.runAllSVMs( y_test, y_train, property_names, file_name, svm_type, getting_directions, threads, logistic_regression, sparse_array) dt.write1dArray(kappa_scores, kappa_fn) dt.write2dArray(directions, directions_fn) dt.write1dArray(f1_scores, ktau_scores_fn) dt.write1dArray(accs, acc_fn) dt.write1dArray(TPs, TP_fn) dt.write1dArray(FPs, FP_fn) dt.write1dArray(TNs, TN_fn) dt.write1dArray(FNs, FN_fn) dt.write1dArray(property_names, property_names_fn + file_name + ".txt") else: final_f1 = [] final_acc = [] for y in range(len(y_train)): f1, acc = self.runClassifySVM(y_test[y], y_train[y]) print(f1, acc) final_f1.append(f1) final_acc.append(acc) dt.write1dArray(final_f1, ktau_scores_fn) dt.write1dArray(final_acc, acc_fn)
def getClusters(directions_fn, scores_fn, names_fn, is_gini, amt_high_directions, amt_low_directions, filename, amt_of_clusters, high_threshold, low_threshold, data_type, rewrite_files=False, half_kappa_half_ndcg="", dont_cluster=0): cluster_names_fn = "../data/" + data_type + "/cluster/first_terms/" + filename + ".txt" clusters_fn = "../data/" + data_type + "/cluster/first_term_clusters/" + filename + ".txt" dict_fn = "../data/" + data_type + "/cluster/dict/" + filename + ".txt" cluster_directions_fn = "../data/" + data_type + "/cluster/clusters/" + filename + ".txt" all_fns = [cluster_names_fn, clusters_fn, dict_fn, cluster_directions_fn] if dt.allFnsAlreadyExist(all_fns) and not rewrite_files: print("Skipping task", getClusters.__name__) return else: print("Running task", getClusters.__name__) hdn, ldn, hd, ld = splitDirections(directions_fn, scores_fn, names_fn, is_gini, amt_high_directions, amt_low_directions, high_threshold, low_threshold, half_kappa_half_ndcg) if amt_low_directions != amt_of_clusters: cluster_directions, least_similar_cluster_names, cluster_name_dict, least_similar_clusters = createTermClusters( hd, ld, hdn, ldn, amt_of_clusters, dont_cluster) else: least_similar_clusters = hd cluster_directions = hd least_similar_cluster_names = hdn cluster_name_dict = OrderedDict() for n in hdn: cluster_name_dict[n] = "" #word_vector_names = nameClustersMedoid(cluster_name_dict) additional_text = "" #if is_gini: # additional_text = "gini" """ directions = np.asarray(dt.import2dArray(directions_fn)) names = np.asarray(dt.import1dArray(names_fn)) least_similar_cluster_names.extend(hdn) least_similar_cluster_names.extend(ldn) least_similar_clusters.extend(hd) least_similar_clusters.extend(ld) cluster_center_directions.extend(ld) cluster_center_directions.extend(directions) """ dt.write1dArray(least_similar_cluster_names, cluster_names_fn) dt.write2dArray(least_similar_clusters, clusters_fn) dt.writeArrayDict(cluster_name_dict, dict_fn) #dt.write1dArray(word_vector_names, word_vector_names_fn) dt.write2dArray(cluster_directions, cluster_directions_fn)
dt.write1dArray(least_similar_cluster_names, cluster_names_fn) dt.write2dArray(least_similar_clusters, clusters_fn) dt.writeArrayDict(cluster_name_dict, dict_fn) #dt.write1dArray(word_vector_names, word_vector_names_fn) dt.write2dArray(cluster_directions, cluster_directions_fn) class Cluster: def __init__(self, directions_fn, scores_fn, names_fn, is_gini, low_threshold, high_threshold, filename): getClusters(directions_fn, scores_fn, names_fn, is_gini, low_threshold, high_threshold, filename) #getClusters(0, 0, 0, 0, 0, 0, 0,0,0,0,0) """ file_name ="films100L250.txt" cluster_directions = "../data/movies/cluster/dict/"+file_name weights_fn = "../data/movies/gini/"+file_name cluster_directions = dt.readArrayDict(cluster_directions) dt.write1dArray(nameClustersRemoveOutliersWeightDistance(cluster_directions), "nameClustersRemoveOutliersWeight"+file_name) """ """ def main(directions_fn, scores_fn, names_fn, is_gini, low_threshold, high_threshold, filename): Cluster(directions_fn, scores_fn, names_fn, is_gini, low_threshold, high_threshold, filename) """ #dt.write1dArray(nameClusters(dt.readArrayDict("Clusters/films100N0.6H25L3CutMostSimilarCLUSTER0.75,0.67.names")), "Clusters/Kfilms100N0.6H25L30.75,0.67.wordvectors") """ names_fn = "SVMResults/films100.names"
def __init__(self, class_path=None, get_scores=False, randomize_finetune_weights=False, dropout_noise=None, amount_of_hidden=0, epochs=1, learn_rate=0.01, loss="mse", batch_size=1, past_model_bias_fn=None, identity_swap=False, reg=0.0, amount_of_finetune=[], output_size=25, hidden_activation="tanh", layer_init="glorot_uniform", output_activation="tanh", deep_size=None, corrupt_finetune_weights=False, split_to_use=-1, hidden_layer_size=100, file_name="unspecified_filename", vector_path=None, is_identity=False, finetune_size=0, data_type="movies", optimizer_name="rmsprop", noise=0.0, fine_tune_weights_fn=None, past_model_weights_fn=None, from_ae=True, save_outputs=False, label_names_fn="", rewrite_files=False, cv_splits=1, cutoff_start=0.2, development=False, class_weight=None, csv_fn=None, tune_vals=False, get_nnet_vectors_path=None, classification_name="all", limit_entities=False, limited_label_fn="", vector_names_fn="", identity_activation="linear", loc="../data/", lock_weights_and_redo=False): weights_fn = loc + data_type + "/nnet/weights/" + file_name + "L0.txt" bias_fn = loc + data_type + "/nnet/bias/" + file_name + "L0.txt" rank_fn = loc + data_type + "/nnet/clusters/" + file_name + ".txt" all_fns = [weights_fn, bias_fn, rank_fn] if dt.allFnsAlreadyExist(all_fns) and not rewrite_files: print("Skipping task", "nnet") return else: print("Running task", "nnet") self.class_path = class_path self.learn_rate = learn_rate self.epochs = epochs self.loss = loss self.batch_size = batch_size self.hidden_activation = hidden_activation self.layer_init = layer_init self.output_activation = output_activation self.hidden_layer_size = hidden_layer_size self.file_name = file_name self.vector_path = vector_path self.dropout_noise = dropout_noise self.finetune_size = finetune_size self.get_scores = get_scores self.reg = reg self.amount_of_finetune = amount_of_finetune self.amount_of_hidden = amount_of_hidden self.output_size = output_size self.identity_swap = identity_swap self.deep_size = deep_size self.from_ae = from_ae self.is_identity = is_identity self.randomize_finetune_weights = randomize_finetune_weights self.corrupt_finetune_weights = corrupt_finetune_weights self.deep_size = deep_size self.fine_tune_weights_fn = fine_tune_weights_fn self.identity_activation = identity_activation self.lock_weights_and_redo = lock_weights_and_redo print(data_type) if optimizer_name == "adagrad": self.optimizer = Adagrad() elif optimizer_name == "sgd": self.optimizer = SGD() elif optimizer_name == "rmsprop": self.optimizer = RMSprop() elif optimizer_name == "adam": self.optimizer = Adam() elif optimizer_name == "adadelta": self.optimizer = Adadelta() else: print("optimizer not found") exit() entity_vectors = np.asarray(dt.import2dArray(self.vector_path)) print("Imported vectors", len(entity_vectors), len(entity_vectors[0])) if get_nnet_vectors_path is not None: nnet_vectors = np.asarray(dt.import2dArray(get_nnet_vectors_path)) print("Imported vectors", len(entity_vectors), len(entity_vectors[0])) entity_classes = np.asarray(dt.import2dArray(self.class_path)) print("Imported classes", len(entity_classes), len(entity_classes[0])) if fine_tune_weights_fn is None: vector_names = dt.import1dArray(vector_names_fn) limited_labels = dt.import1dArray(limited_label_fn) entity_vectors = np.asarray( dt.match_entities(entity_vectors, limited_labels, vector_names)) if fine_tune_weights_fn is not None: if len(entity_vectors) != len(entity_classes): entity_classes = entity_classes.transpose() print("Transposed classes, now in form", len(entity_classes), len(entity_classes[0])) """ # IF Bow if len(entity_vectors[0]) != len(entity_classes[0]): entity_vectors = entity_vectors.transpose() print("Transposed vectors, now in form", len(entity_vectors), len(entity_vectors[0])) """ elif len(entity_vectors) != len(entity_classes): entity_vectors = entity_vectors.transpose() print("Transposed vectors, now in form", len(entity_vectors), len(entity_vectors[0])) self.input_size = len(entity_vectors[0]) self.output_size = len(entity_classes[0]) if fine_tune_weights_fn is not None: model_builder = self.fineTuneNetwork weights = [] if from_ae: self.past_weights = [] past_model_weights = [] for p in past_model_weights_fn: past_model_weights.append( np.asarray(dt.import2dArray(p), dtype="float64")) past_model_bias = [] for p in past_model_bias_fn: past_model_bias.append( np.asarray(dt.import1dArray(p, "f"), dtype="float64")) for p in range(len(past_model_weights)): past_model_weights[p] = np.around(past_model_weights[p], decimals=6) past_model_bias[p] = np.around(past_model_bias[p], decimals=6) for p in range(len(past_model_weights)): self.past_weights.append([]) self.past_weights[p].append(past_model_weights[p]) self.past_weights[p].append(past_model_bias[p]) for f in fine_tune_weights_fn: weights.extend(dt.import2dArray(f)) r = np.asarray(weights, dtype="float64") r = np.asarray(weights, dtype="float64") for a in range(len(r)): r[a] = np.around(r[a], decimals=6) for a in range(len(entity_classes)): entity_classes[a] = np.around(entity_classes[a], decimals=6) self.fine_tune_weights = [] self.fine_tune_weights.append(r.transpose()) self.fine_tune_weights.append( np.zeros(shape=len(r), dtype="float64")) else: model_builder = self.classifierNetwork # Converting labels to categorical f1_scores = [] accuracy_scores = [] f1_averages = [] accuracy_averages = [] original_fn = file_name x_train, y_train, x_test, y_test, x_dev, y_dev = split_data.splitData( vectors, labels[l], data_type) if development: x_test = x_dev y_test = y_dev model = model_builder() if get_scores: test_pred = model.predict(x_train).transpose() print(test_pred) highest_vals = [0.5] * len(test_pred) # Default 0.5 y_pred = model.predict(x_test).transpose() y_test = np.asarray(y_test).transpose() for y in range(len(y_pred)): y_pred[y][y_pred[y] >= highest_vals[y]] = 1 y_pred[y][y_pred[y] < highest_vals[y]] = 0 f1_array = [] accuracy_array = [] for y in range(len(y_pred)): accuracy_array.append(accuracy_score(y_test[y], y_pred[y])) f1_array.append( f1_score(y_test[y], y_pred[y], average="binary")) print(f1_array[y]) y_pred = y_pred.transpose() y_test = np.asarray(y_test).transpose() micro_average = f1_score(y_test, y_pred, average="micro") cv_f1_fn = loc + data_type + "/nnet/scores/F1 " + file_name + ".txt" cv_acc_fn = loc + data_type + "/nnet/scores/ACC " + file_name + ".txt" dt.write1dArray(f1_array, cv_f1_fn) dt.write1dArray(accuracy_array, cv_acc_fn) f1_scores.append(f1_array) accuracy_scores.append(accuracy_array) f1_average = np.average(f1_array) accuracy_average = np.average(accuracy_array) f1_averages.append(f1_average) accuracy_averages.append(accuracy_average) print("Average F1 Binary", f1_average, "Acc", accuracy_average) print("Micro Average F1", micro_average) f1_array.append(f1_average) f1_array.append(micro_average) accuracy_array.append(accuracy_average) accuracy_array.append(0.0) scores = [accuracy_array, f1_array] csv_fn = loc + data_type + "/nnet/csv/" + csv_fn + ".csv" file_names = [file_name + "ACC", file_name + "F1"] label_names = dt.import1dArray(label_names_fn) if dt.fileExists(csv_fn): print("File exists, writing to csv") try: dt.write_to_csv(csv_fn, file_names, scores) except PermissionError: print("CSV FILE WAS OPEN, WRITING TO ANOTHER FILE") dt.write_to_csv( csv_fn[:len(csv_fn) - 4] + str(random.random()) + "FAIL.csv", [file_name], scores) else: print("File does not exist, recreating csv") key = [] for l in label_names: key.append(l) key.append("AVERAGE") key.append("MICRO AVERAGE") dt.write_csv(csv_fn, file_names, scores, key) if save_outputs: if limit_entities is False: self.output_clusters = model.predict(nnet_vectors) else: self.output_clusters = model.predict(entity_vectors) self.output_clusters = self.output_clusters.transpose() dt.write2dArray(self.output_clusters, rank_fn) for l in range(0, len(model.layers) - 1): if dropout_noise is not None and dropout_noise > 0.0: if l % 2 == 1: continue print("Writing", l, "layer") truncated_model = Sequential() for a in range(l + 1): truncated_model.add(model.layers[a]) truncated_model.compile(loss=self.loss, optimizer="sgd") if get_nnet_vectors_path is not None: self.end_space = truncated_model.predict(nnet_vectors) else: self.end_space = truncated_model.predict(entity_vectors) total_file_name = loc + data_type + "/nnet/spaces/" + file_name dt.write2dArray(self.end_space, total_file_name + "L" + str(l) + ".txt") for l in range(len(model.layers)): try: dt.write2dArray( model.layers[l].get_weights()[0], loc + data_type + "/nnet/weights/" + file_name + "L" + str(l) + ".txt") dt.write1dArray( model.layers[l].get_weights()[1], loc + data_type + "/nnet/bias/" + file_name + "L" + str(l) + ".txt") except IndexError: print("Layer ", str(l), "Failed")
def __init__(self, vector_path, class_path, property_names_fn, file_name, svm_type, training_size=10000, lowest_count=200, highest_count=21470000, get_kappa=True, get_f1=True, single_class=True, data_type="movies", getting_directions=True, threads=1, chunk_amt=0, chunk_id=0, rewrite_files=False, classification="all", loc="../data/"): self.get_kappa = True self.get_f1 = get_f1 self.data_type = data_type self.classification = classification self.lowest_amt = lowest_count self.higher_amt = highest_count if chunk_amt > 0: file_name = file_name + " CID" + str(chunk_id) + " CAMT" + str( chunk_amt) directions_fn = loc + data_type + "/svm/directions/" + file_name + ".txt" ktau_scores_fn = loc + data_type + "/svm/f1/" + file_name + ".txt" kappa_fn = loc + data_type + "/svm/kappa/" + file_name + ".txt" acc_fn = loc + data_type + "/svm/acc/" + file_name + ".txt" all_fns = [directions_fn, kappa_fn] if dt.allFnsAlreadyExist(all_fns) and not rewrite_files: print("Skipping task", "getSVMResults") return else: print("Running task", "getSVMResults") y_train = 0 y_test = 0 vectors = np.asarray(dt.import2dArray(vector_path)) print("imported vectors") if not getting_directions: classes = np.asarray(dt.import2dArray(class_path)) print("imported classes") property_names = dt.import1dArray(property_names_fn) print("imported propery names") if chunk_amt > 0: if chunk_id == chunk_amt - 1: chunk = int(len(property_names) / chunk_amt) multiply = chunk_amt - 1 property_names = property_names[chunk * multiply:] else: property_names = dt.chunks( property_names, int( (len(property_names) / chunk_amt)))[chunk_id] if not getting_directions: x_train, x_test, y_train, y_test = train_test_split(vectors, classes, test_size=0.3, random_state=0) else: x_train = vectors x_test = vectors if get_f1: y_train = y_train.transpose() y_test = y_test.transpose() print("transpoosed") self.x_train = x_train self.x_test = x_test self.y_train = y_train self.y_test = y_test if self.get_f1 is False: print("running svms") kappa_scores, directions, ktau_scores, property_names = self.runAllSVMs( y_test, y_train, property_names, file_name, svm_type, getting_directions, threads) dt.write1dArray(kappa_scores, kappa_fn) dt.write2dArray(directions, directions_fn) dt.write1dArray(ktau_scores, ktau_scores_fn) dt.write1dArray(property_names, property_names_fn + file_name + ".txt") else: final_f1 = [] final_acc = [] for y in range(len(y_train)): f1, acc = self.runClassifySVM(y_test[y], y_train[y]) print(f1, acc) final_f1.append(f1) final_acc.append(acc) dt.write1dArray(final_f1, ktau_scores_fn) dt.write1dArray(final_acc, acc_fn)
def __init__(self, features_fn, classes_fn, class_names_fn, cluster_names_fn, filename, training_data, max_depth=None, balance=None, criterion="entropy", save_details=False, data_type="movies", cv_splits=5, csv_fn="../data/temp/no_csv_provided.csv", rewrite_files=False, split_to_use=-1, development=False, limit_entities=False, limited_label_fn=None, vector_names_fn=None, clusters_fn="", cluster_duplicates=False, save_results_so_far=False, multi_label=False): label_names = dt.import1dArray(class_names_fn) filename = filename + str(max_depth) all_fns = [] file_names = ['ACC ' + filename, 'F1 ' + filename] acc_fn = '../data/' + data_type + '/rules/tree_scores/' + file_names[ 0] + '.scores' prediction_fn = '../data/' + data_type + '/rules/tree_output/' + filename + '.scores' f1_fn = '../data/' + data_type + '/rules/tree_scores/' + file_names[ 1] + '.scores' all_top_names_fn = "../data/" + data_type + "/rules/names/" + filename + ".txt" all_top_rankings_fn = "../data/" + data_type + "/rules/rankings/" + filename + ".txt" all_top_clusters_fn = "../data/" + data_type + "/rules/clusters/" + filename + ".txt" fns_name = "../data/" + data_type + "/rules/names/" + filename + label_names[ 0] + ".txt" features_name = "../data/" + data_type + "/rules/rankings/" + filename + label_names[ 0] + ".txt" dt_clusters_name = "../data/" + data_type + "/rules/clusters/" + filename + label_names[ 0] + ".txt" if save_details is False: all_fns = [acc_fn, f1_fn, prediction_fn, csv_fn] else: new_graph_png_fn = '../data/' + data_type + '/rules/tree_images/' + label_names[ 0] + " " + filename + '.png' all_fns = [acc_fn, f1_fn, prediction_fn, csv_fn] if max_depth is not None: all_fns.append(all_top_names_fn) all_fns.append(all_top_rankings_fn) all_fns.append(all_top_clusters_fn) if save_details: orig_dot_file_fn = '../data/' + data_type + '/rules/tree_data/' + label_names[ 0] + " " + filename + 'orig.txt' # all_fns.append(orig_dot_file_fn) model_name_fn = "../data/" + data_type + "/rules/tree_model/" + label_names[ 0] + " " + filename + ".model" #all_fns.append(model_name_fn) if dt.allFnsAlreadyExist(all_fns) and not rewrite_files: print("Skipping task", "DecisionTree") return else: print("Running task", "DecisionTree") vectors = np.asarray(dt.import2dArray(features_fn)) if data_type == "sentiment": # If it's just a binary class... labels = np.asarray(dt.import1dArray(classes_fn, "i")) else: labels = np.asarray(dt.import2dArray(classes_fn, "i")) print("vectors", len(vectors), len(vectors[0])) print("labels", len(labels), len(labels[0])) if data_type == "sentiment" or len(vectors) != len(labels[0]): vectors = vectors.transpose() print("vectors", len(vectors), len(vectors[0])) cluster_names = dt.import2dArray(cluster_names_fn, "s") clusters = dt.import2dArray(clusters_fn, "f") original_vectors = vectors if "ratings" in classes_fn: orig_path = "/".join(classes_fn.split("/")[:-1]) + "/" match_ids_fn = orig_path + "matched_ids.txt" if os.path.exists(match_ids_fn): matched_ids = dt.import1dArray(match_ids_fn, "i") else: vector_names = dt.import1dArray(vector_names_fn) limited_labels = dt.import1dArray(limited_label_fn) matched_ids = dt.match_entities(vector_names, limited_labels) dt.write1dArray(matched_ids, match_ids_fn) vectors = vectors[matched_ids] print("vectors", len(vectors)) print("Past limit entities") for l in range(len(label_names)): if label_names[l][:6] == "class-": label_names[l] = label_names[l][6:] f1_array = [] accuracy_array = [] prec_array = [] recall_array = [] if not multi_label and data_type != "sentiment": labels = labels.transpose() print("labels transposed") print("labels", len(labels), len(labels[0])) else: labels = [labels] all_top_clusters = [] all_top_rankings = [] all_top_names = [] all_top_inds = [] all_y_test = [] all_predictions = [] print("At label prediction") for l in range(len(labels)): # Select training data with cross validationac_y_test = [] cv_acc = [] cv_prec = [] cv_recall = [] c = 0 # If doing cross-validation if cv_splits > 1: ac_x_train, ac_y_train, ac_x_test, ac_y_test, ac_x_dev, ac_y_dev = split_data.crossValData( cv_splits, vectors, labels[l]) else: x_train, y_train, x_test, y_test, x_dev, y_dev = split_data.splitData( vectors, labels[l], data_type) ac_y_train = [x_train] ac_x_train = [y_train] ac_x_test = [x_test] ac_y_test = [y_test] ac_y_dev = [x_dev] ac_x_dev = [y_dev] if development: ac_x_test = ac_x_dev ac_y_test = ac_y_dev for splits in range(len(ac_y_test)): model_name_fn = "../data/" + data_type + "/rules/tree_model/" + label_names[ l] + " " + filename + ".model" """ if dt.fileExists(model_name_fn) and not rewrite_files: try: clf = joblib.load(model_name_fn) except KeyError: print(model_name_fn) # If a model is disrupted partway through its processing else: """ clf = tree.DecisionTreeClassifier(max_depth=max_depth, criterion=criterion, class_weight=balance) clf.fit(ac_x_train[splits], ac_y_train[splits]) joblib.dump(clf, model_name_fn) predictions.append(clf.predict(ac_x_test[splits])) ac_y_test = list(ac_y_test) predictions = list(predictions) for i in range(len(predictions)): print(scores) class_names = ["NOT " + label_names[l], label_names[l]] # Export a tree for each label predicted by the clf if save_details: orig_dot_file_fn = '../data/' + data_type + '/rules/tree_data/' + label_names[ l] + " " + filename + 'orig.txt' new_dot_file_fn = '../data/' + data_type + '/rules/tree_data/' + label_names[ l] + " " + filename + '.txt' orig_graph_png_fn = '../data/' + data_type + '/rules/tree_images/' + label_names[ l] + " " + filename + 'orig.png' new_graph_png_fn = '../data/' + data_type + '/rules/tree_images/' + label_names[ l] + " " + filename + '.png' orig_temp_graph_png_fn = '../data/' + data_type + '/rules/tree_temp/' + label_names[ l] + " " + filename + 'orig.png' new_temp_graph_png_fn = '../data/' + data_type + '/rules/tree_temp/' + label_names[ l] + " " + filename + '.png' output_names = [] for c in cluster_names: line = "" counter = 0 for i in range(len(c)): line = line + c[i] + " " counter += 1 if counter == 8: break output_names.append(line) failed = False try: tree.export_graphviz( clf, feature_names=output_names, class_names=class_names, out_file=orig_dot_file_fn, max_depth=max_depth, label='all', filled=True, impurity=True, node_ids=True, proportion=True, rounded=True, ) except FileNotFoundError: try: orig_dot_file_fn = "//?/" + orig_dot_file_fn tree.export_graphviz(clf, feature_names=output_names, class_names=class_names, out_file=orig_dot_file_fn, max_depth=max_depth, label='all', filled=True, impurity=True, node_ids=True, proportion=True, rounded=True) except FileNotFoundError: failed = True print("doesnt work fam") if failed == False: rewrite_dot_file = dt.import1dArray(orig_dot_file_fn) new_dot_file = [] max = 3 min = -3 """ for f in original_vectors: for n in f: if n > max: max = n if n < min: min = n """ print(max) print(min) boundary = max - min boundary = boundary / 5 bound_1 = 0 - boundary * 2 bound_2 = 0 - boundary * 1 bound_3 = 0 bound_4 = 0 + boundary bound_5 = 0 + boundary * 2 for s in rewrite_dot_file: if ":" in s: s = s.split("<=") no_num = s[0] num = s[1] num = num.split() end = " ".join(num[:-1]) num_split = num[0].split("\\") num = num_split[0] end = end[len(num):] num = float(num) replacement = "" if num <= bound_2: replacement = "VERY LOW" elif num <= bound_3: replacement = "VERY LOW - LOW" elif num <= bound_4: replacement = "VERY LOW - AVERAGE" elif num <= bound_5: replacement = "VERY LOW - HIGH" elif num >= bound_5: replacement = "VERY HIGH" new_string_a = [no_num, replacement, end] new_string = " ".join(new_string_a) new_dot_file.append(new_string) if "]" in new_string: if '"' not in new_string[len(new_string) - 10:]: for c in range(len(new_string)): if new_string[c + 1] == "]": new_string = new_string[: c] + '"' + new_string[ c:] break else: new_dot_file.append(s) """ new_string = s if "->" not in s and "digraph" not in s and "node" not in s and "(...)" not in s and "}" not in s: index = s.index("value") new_string = s[:index] + '"] ;' new_dot_file.append(new_string) """ #new_dot_file.append(s) dt.write1dArray(new_dot_file, new_dot_file_fn) try: orig_graph = pydot.graph_from_dot_file( orig_dot_file_fn) new_graph = pydot.graph_from_dot_file( new_dot_file_fn) orig_graph.write_png(orig_graph_png_fn) new_graph.write_png(new_graph_png_fn) orig_graph.write_png(orig_temp_graph_png_fn) new_graph.write_png(new_temp_graph_png_fn) except FileNotFoundError: orig_graph_png_fn = "//?/" + orig_graph_png_fn try: orig_graph.write_png(orig_graph_png_fn) new_graph_png_fn = "//?/" + new_graph_png_fn new_graph.write_png(new_graph_png_fn) except FileNotFoundError: print("failed graph") self.get_code(clf, output_names, class_names, label_names[l] + " " + filename, data_type) dt_clusters, features, fns, inds = self.getNodesToDepth( clf, original_vectors, cluster_names, clusters) print(filename + label_names[l]) fns_name = "../data/" + data_type + "/rules/names/" + filename + label_names[ l] + ".txt" features_name = "../data/" + data_type + "/rules/rankings/" + filename + label_names[ l] + ".txt" dt_clusters_name = "../data/" + data_type + "/rules/clusters/" + filename + label_names[ l] + ".txt" dt.write2dArray(fns, fns_name) dt.write2dArray(features, features_name) dt.write2dArray(dt_clusters, dt_clusters_name) all_top_rankings.extend(features) all_top_clusters.extend(dt_clusters) all_top_names.extend(fns) all_top_inds.extend(inds) print("len clusters", len(all_top_clusters)) print("len rankings", len(all_top_rankings)) print("len names", len(all_top_names)) if len(all_top_clusters) != len(all_top_rankings) or len( all_top_clusters) != len(all_top_names): print("stop") accuracy_array = np.asarray(accuracy_array) accuracy_average = np.average(accuracy_array) prec_array = np.asarray(prec_array) average_prec = np.average(prec_array) recall_array = np.asarray(recall_array) average_recall = np.average(recall_array) f1_average = 2 * ((average_prec * average_recall) / (average_prec + average_recall)) if math.isnan(f1_average): print("NAN", prec, recall) f1_average = 0.0 all_y_test = np.asarray(all_y_test) all_predictions = np.asarray(all_predictions) micro_average = f1_score(all_y_test, all_predictions, average="micro") accuracy_array = accuracy_array.tolist() accuracy_array.append(accuracy_average) accuracy_array.append(0.0) f1_array.append(f1_average) f1_array.append(micro_average) scores = [accuracy_array, f1_array] dt.write1dArray(accuracy_array, acc_fn) dt.write1dArray(f1_array, f1_fn) dt.write2dArray(all_predictions, prediction_fn) if dt.fileExists(csv_fn): print("File exists, writing to csv") try: dt.write_to_csv(csv_fn, file_names, scores) except PermissionError: print("CSV FILE WAS OPEN, SKIPPING") except ValueError: print("File does not exist, recreating csv") key = [] for l in label_names: key.append(l) key.append("AVERAGE") key.append("MICRO AVERAGE") dt.write_csv(csv_fn, file_names, scores, key) else: print("File does not exist, recreating csv") key = [] for l in label_names: key.append(l) key.append("AVERAGE") key.append("MICRO AVERAGE") dt.write_csv(csv_fn, file_names, scores, key) if max_depth is not None: all_top_names = np.asarray(all_top_names) all_top_rankings = np.asarray(all_top_rankings) all_top_clusters = np.asarray(all_top_clusters) all_top_inds = np.asarray(all_top_inds) if cluster_duplicates: ind_to_keep = np.unique(all_top_inds, return_index=True)[1] all_top_names = all_top_names[ind_to_keep] all_top_rankings = all_top_rankings[ind_to_keep] all_top_clusters = all_top_clusters[ind_to_keep] dt.write2dArray(all_top_names, all_top_names_fn) dt.write2dArray(all_top_rankings, all_top_rankings_fn) dt.write2dArray(all_top_clusters, all_top_clusters_fn)