Example #1
0
def make_plot(items,
              figfile='',
              xlabel='',
              ylabel='',
              x_log=False,
              y_log=False,
              labels=[],
              title='',
              ps=qu.PlotStyle('dark')):
    plt.cla()
    plt.clf()

    fig, ax = plt.subplots(1, 1)
    colors = ps.colors
    #fig.patch.set_facecolor('white')
    for i, item in enumerate(items):
        label = None
        if len(labels) >= i:
            label = labels[i]
        color = colors[i % len(colors)]
        ax.plot(item, label=label, color=color)

    if x_log: ax.set_xscale('log')
    if y_log: ax.set_yscale('log')

    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)

    ax.legend()
    if figfile != '':
        plt.savefig(figfile, transparent=True, facecolor=ps.canv_plt)
    plt.show()
Example #2
0
def MetricPlot(model_history, 
               acc_range=(0.5,1.), loss_range=(0.,0.7), 
               acc_log=False, loss_log=False, 
               plotpath='/', 
               model_keys=[], 
               plotstyle=qu.PlotStyle('dark')):
    
    if(model_keys == []): model_keys = list(model_history.keys())
    for model_key in model_keys:
        fig, ax = plt.subplots(1,2,figsize=(15,5))
    
        keys = ['acc','val_acc']
        lines = [model_history[model_key][key] for key in keys]
        epochs = np.arange(len(lines[0])) + 1
        pu.multiplot_common(
            ax[0], 
            epochs,
            lines, 
            keys, 
            y_min = acc_range[0], 
            y_max = acc_range[1],
            y_log = acc_log,
            xlabel = 'Epoch',
            ylabel = 'Accuracy',
            title='Model accuracy for {}'.format(model_key),
            ps=plotstyle
        )
    
        keys = ['loss','val_loss']
        lines = [model_history[model_key][key] for key in keys]
        pu.multiplot_common(
            ax[1], 
            epochs,
            lines, 
            keys, 
            y_min = loss_range[0], 
            y_max = loss_range[1],
            y_log = loss_log,
            xlabel = 'Epoch', 
            ylabel = 'Loss', 
            title='Model loss for {}'.format(model_key), 
            ps=plotstyle
        )
    
        # add grids
        for axis in ax.flatten():
            axis.grid(True,color=plotstyle.grid_plt)

        qu.SaveSubplots(fig, ax, ['accuracy_{}'.format(model_key), 'loss_{}'.format(model_key)], savedir=plotpath, ps=plotstyle)
        plt.show()
    return
Example #3
0
def roc_plot(ax,
             xlist,
             ylist,
             xlabel='False positive rate',
             ylabel='True positive rate',
             x_min=0,
             x_max=1.1,
             x_log=False,
             y_min=0,
             y_max=1.1,
             y_log=False,
             linestyles=[],
             colorgrouping=-1,
             extra_lines=[[[0, 1], [0, 1]]],
             labels=[],
             atlas_x=-1,
             atlas_y=-1,
             simulation=False,
             textlist=[],
             title='',
             ps=qu.PlotStyle('dark'),
             colors=None):
    '''
    Shortcut for making a ROC curve.
    '''
    multiplot(ax,
              xlist,
              ylist,
              xlabel=xlabel,
              ylabel=ylabel,
              x_min=x_min,
              x_max=x_max,
              x_log=x_log,
              y_min=y_min,
              y_max=y_max,
              y_log=y_log,
              linestyles=linestyles,
              colorgrouping=colorgrouping,
              extra_lines=extra_lines,
              labels=labels,
              atlas_x=atlas_x,
              atlas_y=atlas_y,
              simulation=simulation,
              textlist=textlist,
              title=title,
              ps=ps,
              colors=colors)
    return
Example #4
0
def histogramOverlay(ax,
                     data,
                     labels,
                     xlabel,
                     ylabel,
                     x_min=0,
                     x_max=2200,
                     xbins=22,
                     normed=True,
                     y_log=False,
                     atlas_x=-1,
                     atlas_y=-1,
                     simulation=False,
                     textlist=[],
                     ps=qu.PlotStyle('dark')):

    xbin = np.arange(x_min, x_max, (x_max - x_min) / xbins)
    zorder_start = -1 * len(data)  # hack to get axes on top
    colors = ps.colors

    for i, vals in enumerate(data):
        ax.hist(vals,
                bins=xbin,
                density=normed,
                alpha=0.5,
                label=labels[i],
                color=colors[i % len(colors)],
                zorder=zorder_start + i)

    ax.set_xlim(x_min, x_max)

    if y_log: ax.set_yscale('log')
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)

    ps.SetStylePlt(ax)

    # TODO: find a way to replace this
    #if atlas_x >= 0 and atlas_y >= 0:
    #ampl.draw_atlas_label(atlas_x, atlas_y, simulation = simulation, fontsize = 18)

    #drawLabels(fig, atlas_x, atlas_y, simulation, textlist) #TODO: fix for fig,ax implementation

    ax.set_zorder = len(data) + 1  #hack to keep the tick marks up
    legend = ax.legend(facecolor=ps.canv_plt)
    for leg_text in legend.get_texts():
        leg_text.set_color(ps.text_plt)
    return
Example #5
0
def MapStabilityTest(mapping_func,
                     b_vals=[0., .1, .5, 1., 1.0e14],
                     m_vals=[1.],
                     x=np.linspace(0.001, 4., 1000),
                     ps=qu.PlotStyle('dark'),
                     savedir='',
                     legend_size=-1):

    mb_combos = list(itertools.product(b_vals, m_vals))

    if (m_vals == [1.]):
        forward_labels = ['f(x), b={:.1e}'.format(mb[0]) for mb in mb_combos]
        reverse_labels = [
            'g(f(x)), b={:.1e}'.format(mb[0]) for mb in mb_combos
        ]
    else:
        forward_labels = [
            'f(x), b={:.1e}, m={:.1e}'.format(mb[0], mb[1]) for mb in mb_combos
        ]
        reverse_labels = [
            'g(f(x)), b={:.1e}, m={:.1e}'.format(mb[0], mb[1])
            for mb in mb_combos
        ]

    forward = [mapping_func(b, m).Forward(x) for (b, m) in mb_combos]
    reverse = [
        mapping_func(mb_combos[i][0], mb_combos[i][1]).Inverse(forward[i])
        for i in range(len(forward))
    ]

    #reverse = [mapping_func(b,m).Inverse(forward) for (b,m) in mb_combos]

    fig, ax = plt.subplots(1, 2, figsize=(16, 6))
    y_min, y_max = (np.min(x), np.max(x))

    pu.multiplot_common(ax[0],
                        x,
                        forward,
                        forward_labels,
                        y_min=y_min,
                        y_max=y_max,
                        xlabel='x',
                        ylabel='y',
                        title='Forward Mapping',
                        ps=ps)
    pu.multiplot_common(ax[1],
                        x,
                        reverse,
                        reverse_labels,
                        y_min=y_min,
                        y_max=y_max,
                        xlabel='x',
                        ylabel='y',
                        title='Reverse Mapping',
                        ps=ps)

    if (legend_size > 0): plt.rc('legend', fontsize=legend_size)
    plt.show()

    savename = 'mapping_test.png'
    if (savedir != ''):
        savename = savedir + '/' + savename
    fig.savefig(savename, transparent=True)
    return
Example #6
0
def multiplot_common(ax,
                     xcenter,
                     lines,
                     labels,
                     xlabel,
                     ylabel,
                     x_min=None,
                     x_max=None,
                     y_min=None,
                     y_max=None,
                     x_log=False,
                     y_log=False,
                     x_ticks=None,
                     linestyles=[],
                     colorgrouping=-1,
                     extra_lines=[],
                     atlas_x=-1,
                     atlas_y=-1,
                     simulation=False,
                     textlist=[],
                     title='',
                     ps=qu.PlotStyle('dark'),
                     colors=None):
    '''
    Creates a set of plots, on a common carrier "xcenter".
    Draws the plots on a provided axis.
    '''

    if (x_min == None): x_min = np.min(xcenter)
    if (x_max == None): x_max = np.max(xcenter)

    if (y_min == None): y_min = np.minimum(0., np.min(np.column_stack(lines)))
    if (y_max == None): y_max = 1.25 * np.max(np.column_stack(lines))

    if (x_ticks != None): ax.xaxis.set_major_locator(plt.MaxNLocator(x_ticks))

    for extra_line in extra_lines:
        ax.plot(extra_line[0], extra_line[1], linestyle='--', color='black')

    if (colors is None): colors = ps.colors

    for i, line in enumerate(lines):
        if len(linestyles) > 0:
            linestyle = linestyles[i]
        else:
            linestyle = 'solid'
        if colorgrouping > 0:
            color = colors[int(np.floor(i / colorgrouping))]
        else:
            color = colors[i % len(colors)]
        ax.plot(xcenter,
                line,
                label=labels[i],
                linestyle=linestyle,
                color=color)

    if x_log: ax.set_xscale('log')
    if y_log: ax.set_yscale('log')
    ax.set_xlim(x_min, x_max)
    ax.set_ylim(y_min, y_max)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_title(title)

    ps.SetStylePlt(ax)

    #drawLabels(fig, atlas_x, atlas_y, simulation, textlist)

    legend = ax.legend(facecolor=ps.canv_plt)
    for leg_text in legend.get_texts():
        leg_text.set_color(ps.text_plt)
    return
Example #7
0
def multiplot(ax,
              xlist,
              ylist,
              xlabel='False positive rate',
              ylabel='True positive rate',
              x_min=0,
              x_max=1.1,
              x_log=False,
              y_min=0,
              y_max=1.1,
              y_log=False,
              linestyles=[],
              colorgrouping=-1,
              extra_lines=[],
              labels=[],
              atlas_x=-1,
              atlas_y=-1,
              simulation=False,
              textlist=[],
              title='',
              ps=qu.PlotStyle('dark'),
              colors=None):
    '''
    Creates a set of plots, from series of x and y values (does not use a common carrier).
    Draws the plots on a provided axis.
    '''
    for extra_line in extra_lines:
        ax.plot(extra_line[0],
                extra_line[1],
                linestyle='--',
                color=ps.main_plt)

    if (colors is None): colors = ps.colors

    for i, (x, y) in enumerate(zip(xlist, ylist)):
        if len(linestyles) > 0:
            linestyle = linestyles[i]
        else:
            linestyle = 'solid'
        if colorgrouping > 0:
            color = colors[int(np.floor(i / colorgrouping))]
        else:
            color = colors[i % (len(colors))]
        label = None
        if len(labels) > 0:
            label = labels[i]
        ax.plot(x, y, label=label, linestyle=linestyle, color=color)

    if x_log: ax.set_xscale('log')
    if y_log: ax.set_yscale('log')

    ax.set_title(title)
    ax.set_xlim(x_min, x_max)
    ax.set_ylim(y_min, y_max)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)

    ps.SetStylePlt(ax)

    legend = ax.legend(facecolor=ps.canv_plt)
    for leg_text in legend.get_texts():
        leg_text.set_color(ps.text_plt)

    #drawLabels(fig, atlas_x, atlas_y, simulation, textlist)
    return
Example #8
0
def EnergySummary(train_dfs,
                  valid_dfs,
                  data_dfs,
                  energy_name,
                  model_name,
                  plotpath,
                  extensions=['png'],
                  plot_size=750,
                  full=True,
                  ps=qu.PlotStyle('dark'),
                  **kwargs):

    ps.SetStyle()

    max_energy = 2000.  # GeV
    max_energy_2d = max_energy
    bin_energy = 300
    ratio_range_2d = [0.3, 1.7]
    bins_2d = [200, 70]

    if ('max_energy' in kwargs.keys()):
        max_energy = kwargs['max_energy']
        max_energy_2d = max_energy
    if ('max_energy_2d' in kwargs.keys()): max_energy = kwargs['max_energy_2d']
    if ('bin_energy' in kwargs.keys()): bin_energy = kwargs['bin_energy']
    if ('ratio_range_2d' in kwargs.keys()):
        ratio_range_2d = kwargs['ratio_range_2d']
    if ('bins_2d' in kwargs.keys()): bins_2d = kwargs['bins_2d']

    # Dictionaries to keep track of all our histogram objects.
    # Each entry will be a dictionary of hists.
    # Outer key is data type (charged pion, neutral pion),
    # inner key is data set (train, valid, all).

    clusterE = {}  # reco energy
    clusterE_calib = {
    }  # cluster_ENG_CALIB_TOT (true energy, as far as we're concerned)
    clusterE_pred = {}  # predicted energy
    #clusterE_true = {}           # "truth" energy from the parton level (I think), not what we're after

    clusterE_ratio1 = {}  # ratio1: E_pred / ENG_CALIB_TOT
    clusterE_ratio2 = {}  # ratio2: E_reco / ENG_CALIB_TOT
    clusterE_ratio2D = {}  # ratio1 vs. ENG_CALIB_TOT
    clusterE_ratio2D_zoomed = {}  # ratio1 vs. ENG_CALIB_TOT (Zoomed on left)

    ratio1_iqr = {}  # IQR, from ratio1
    ratio2_iqr = {}  # IQR, from ratio2
    ratio1_iqr_zoomed = {}  # IQR, from ratio1
    ratio2_iqr_zoomed = {}  # IQR, from ratio2

    # histogram stacks
    energy_stacks = {}
    iqr_stacks = {}
    iqr_stacks_zoomed = {}

    # keep track of mean/median curves from the 2D plots (one set for each).
    mean_curves = {}
    mean_curves_zoomed = {}

    # keep track of our canvases, legends and histogram stacks
    canvs = {}
    legends = {}

    key_conversions = {
        'pp': '#pi^{#pm}',
        'p0': '#pi^{0}',
    }

    dsets = {'train': train_dfs, 'valid': valid_dfs, 'all data': data_dfs}

    for key in train_dfs.keys(
    ):  # assuming all DataFrame dicts have the same keys

        # Initialize the inner dictionaries.
        clusterE[key] = {}
        clusterE_calib[key] = {}
        clusterE_pred[key] = {}
        #clusterE_true[key] = {}

        clusterE_ratio1[key] = {}
        clusterE_ratio2[key] = {}
        clusterE_ratio2D[key] = {}
        clusterE_ratio2D_zoomed[key] = {}

        ratio1_iqr[key] = {}
        ratio2_iqr[key] = {}
        ratio1_iqr_zoomed[key] = {}
        ratio2_iqr_zoomed[key] = {}

        energy_stacks[key] = {}
        iqr_stacks[key] = {}
        iqr_stacks_zoomed[key] = {}

        mean_curves[key] = {}
        mean_curves_zoomed[key] = {}

        canvs[key] = {}
        legends[key] = {}
        iqr_stacks[key] = {}

        for dkey, frame in dsets.items():
            key2 = '(' + key_conversions[key] + ', ' + dkey + ')'
            clusterE[key][dkey] = rt.TH1F(
                qu.RN(), 'E_{reco} ' + key2 + '; E_{reco} [GeV];Count',
                bin_energy, 0., max_energy)
            clusterE_calib[key][dkey] = rt.TH1F(
                qu.RN(),
                'E_{calib}^{tot} ' + key2 + ';E_{calib}^{tot} [GeV];Count',
                bin_energy, 0., max_energy)
            clusterE_pred[key][dkey] = rt.TH1F(
                qu.RN(), 'E_{pred} ' + key2 + ';E_{pred} [GeV];Count',
                bin_energy, 0., max_energy)
            #clusterE_true[key][dkey] = rt.TH1F(qu.RN(), 'E_{true} ' + key2 + ';E_{true} [GeV];Count', bin_energy,0.,max_energy)
            clusterE_ratio1[key][dkey] = rt.TH1F(
                qu.RN(), 'E_{pred} / E_{calib}^{tot} ' + key2 +
                ';E_{pred}/E_{calib}^{tot};Count', 250, 0., 10.)
            clusterE_ratio2[key][dkey] = rt.TH1F(
                qu.RN(), 'E / E_{calib}^{tot} ' + key2 +
                ';E_{reco}/E_{calib}^{tot]};Count', 250, 0., 10.)

            qu.SetColor(clusterE[key][dkey], ps.main, alpha=0.4)
            qu.SetColor(clusterE_calib[key][dkey], rt.kPink + 9, alpha=0.4)
            qu.SetColor(clusterE_pred[key][dkey], ps.curve, alpha=0.4)
            #             qu.SetColor(clusterE_true[key][dkey], rt.kRed, alpha = 0.4)
            qu.SetColor(clusterE_ratio1[key][dkey], ps.main, alpha=0.4)
            qu.SetColor(clusterE_ratio2[key][dkey], ps.curve, alpha=0.4)

            meas = frame[key]['clusterE'].to_numpy()
            calib = frame[key]['cluster_ENG_CALIB_TOT'].to_numpy()
            pred = frame[key][energy_name].to_numpy()
            #true   = frame[key]['truthE'].to_numpy()
            ratio1 = pred / calib
            ratio2 = meas / calib

            for i in range(len(meas)):
                clusterE[key][dkey].Fill(meas[i])
                clusterE_calib[key][dkey].Fill(calib[i])
                clusterE_pred[key][dkey].Fill(pred[i])
                #clusterE_true[key][dkey].Fill(true[i])
                clusterE_ratio1[key][dkey].Fill(ratio1[i])
                clusterE_ratio2[key][dkey].Fill(ratio2[i])

            # Fill the histogram stack for the energy ratios.
            energy_stacks[key][dkey] = rt.THStack(
                qu.RN(), clusterE_ratio1[key][dkey].GetTitle())
            energy_stacks[key][dkey].Add(clusterE_ratio1[key][dkey])
            energy_stacks[key][dkey].Add(clusterE_ratio2[key][dkey])

            # Make the 2D energy ratio plots.
            title = 'E_{pred}/E_{calib}^{tot} vs. E_{calib}^{tot} ' + key2 + ';E_{calib}^{tot} [GeV];E_{pred}/E_{calib}^{tot};Count'
            x_range = [0., max_energy_2d]
            nbins = bins_2d
            mean_curves[key][dkey], clusterE_ratio2D[key][dkey] = EnergyPlot2D(
                pred,
                calib,
                nbins=nbins,
                x_range=x_range,
                y_range=ratio_range_2d,
                title=title,
                offset=True)

            title = 'E_{pred}/E_{calib}^{tot} vs. E_{calib}^{tot} ' + key2 + ';(E_{calib}^{tot} + 1) [GeV];E_{pred}/E_{calib}^{tot};Count'
            x_range = [1., 1. + 0.01 * max_energy_2d]
            nbins = bins_2d
            nbins[0] = nbins[0] - 1
            mean_curves_zoomed[key][dkey], clusterE_ratio2D_zoomed[key][
                dkey] = EnergyPlot2D(pred,
                                     calib,
                                     nbins=nbins,
                                     x_range=x_range,
                                     y_range=ratio_range_2d,
                                     title=title,
                                     offset=False)

            # Make the energy ratio IQR plots.
            title = 'IQR(E_{x}/E_{calib}^{tot}) ' + key2 + ';E_{calib}^{tot} [GeV];IQR'
            x_range = [0., max_energy_2d]
            nbins = int(bins_2d[0] / 2)
            ratio1_iqr[key][dkey] = IqrPlot(pred,
                                            calib,
                                            title=title,
                                            nbins=nbins,
                                            x_range=x_range)
            ratio1_iqr[key][dkey].SetLineColor(ps.main)
            ratio2_iqr[key][dkey] = IqrPlot(meas,
                                            calib,
                                            title=title,
                                            nbins=nbins,
                                            x_range=x_range)
            ratio2_iqr[key][dkey].SetLineColor(ps.curve)

            title = 'IQR(E_{x}/E_{calib}^{tot}) ' + key2 + ';(E_{calib}^{tot} + 1) [GeV];IQR'
            x_range = [1., 1. + 0.01 * max_energy_2d]
            nbins = int((bins_2d[0] - 1) / 2)
            ratio1_iqr_zoomed[key][dkey] = IqrPlot(pred,
                                                   calib,
                                                   title=title,
                                                   nbins=nbins,
                                                   x_range=x_range,
                                                   offset=True)
            ratio1_iqr_zoomed[key][dkey].SetLineColor(ps.main)
            ratio2_iqr_zoomed[key][dkey] = IqrPlot(meas,
                                                   calib,
                                                   title=title,
                                                   nbins=nbins,
                                                   x_range=x_range,
                                                   offset=True)
            ratio2_iqr_zoomed[key][dkey].SetLineColor(ps.curve)

            # Fill the histogram stack for the IQR plots.
            iqr_stacks[key][dkey] = rt.THStack(qu.RN(), title)
            iqr_stacks[key][dkey].Add(ratio1_iqr[key][dkey])
            iqr_stacks[key][dkey].Add(ratio2_iqr[key][dkey])

            iqr_stacks_zoomed[key][dkey] = rt.THStack(qu.RN(), title)
            iqr_stacks_zoomed[key][dkey].Add(ratio1_iqr_zoomed[key][dkey])
            iqr_stacks_zoomed[key][dkey].Add(ratio2_iqr_zoomed[key][dkey])

        # Prepare the list of plots we'll show (we might exclude some).
        plots = [
            clusterE, clusterE_calib, clusterE_pred, energy_stacks,
            clusterE_ratio2D, clusterE_ratio2D_zoomed, iqr_stacks,
            iqr_stacks_zoomed
        ]
        if (not full):
            plots = [
                energy_stacks, clusterE_ratio2D, clusterE_ratio2D_zoomed,
                iqr_stacks, iqr_stacks_zoomed
            ]
        dkeys = list(dsets.keys())

        # Make legend for the overlapping plots (1D energy ratios, and IQR plots)
        legends[key] = rt.TLegend(0.7, 0.7, 0.85, 0.85)
        legends[key].SetBorderSize(0)
        legends[key].AddEntry(clusterE_ratio1[key][dkeys[0]], 'x = pred', 'f')
        legends[key].AddEntry(clusterE_ratio2[key][dkeys[0]], 'x = reco', 'f')

        nx = len(dkeys)
        ny = len(plots)
        canvs[key] = rt.TCanvas(qu.RN(), 'c_' + str(key), nx * plot_size,
                                ny * plot_size)
        canvs[key].Divide(nx, ny)

        for i, plot in enumerate(plots):
            x = nx * i + 1
            if (plot == energy_stacks or plot == iqr_stacks
                    or plot == iqr_stacks_zoomed):
                for j, dkey in enumerate(dkeys):
                    canvs[key].cd(x + j)

                    draw_option = 'NOSTACK HIST'
                    if (plot != energy_stacks): draw_option = 'NOSTACK C'
                    plot[key][dkey].Draw(draw_option)

                    rt.gPad.SetGrid()
                    rt.gPad.SetLogy()
                    plot[key][dkey].GetHistogram().GetXaxis().SetTitle(
                        'E_{x}/E_{calib}^{tot}')

                    if (plot == energy_stacks):
                        plot[key][dkey].GetHistogram().GetYaxis().SetTitle(
                            clusterE_ratio1[key][dkey].GetYaxis().GetTitle())

                        #                         if(strat == 'jet'):
                        #                             plot[key][dkey].SetMinimum(5.0e-1)
                        #                             plot[key][dkey].SetMaximum(1.0e3)

                        plot[key][dkey].SetMinimum(5.0e-1)
                        plot[key][dkey].SetMaximum(2.0e5)

                    else:
                        plot[key][dkey].GetHistogram().GetYaxis().SetTitle(
                            ratio1_iqr[key][dkey].GetYaxis().GetTitle())
                        plot[key][dkey].SetMinimum(1.0e-2)
                        plot[key][dkey].SetMaximum(1.)

                    if (plot == iqr_stacks_zoomed):
                        rt.gPad.SetLogx()
                        rt.gPad.SetBottomMargin(0.15)
                        plot[key][dkey].GetXaxis().SetTitleOffset(1.5)

                    if (plot == iqr_stacks or plot == iqr_stacks_zoomed):
                        plot[key][dkey].SetMinimum(1.0e-3)

                    legends[key].SetTextColor(ps.text)
                    legends[key].Draw()

            elif (plot == clusterE_ratio2D or plot == clusterE_ratio2D_zoomed):
                for j, dkey in enumerate(dkeys):
                    canvs[key].cd(x + j)
                    plot[key][dkey].Draw('COLZ')
                    if (plot == clusterE_ratio2D):
                        mean_curves[key][dkey].Draw('SAME')
                    else:
                        mean_curves_zoomed[key][dkey].Draw('SAME')
                        rt.gPad.SetLogx()
                        rt.gPad.SetBottomMargin(0.15)
                        plot[key][dkey].GetXaxis().SetTitleOffset(1.5)

                    rt.gPad.SetLogz()
                    rt.gPad.SetRightMargin(0.2)
                    plot[key][dkey].GetXaxis().SetMaxDigits(4)

            else:
                for j, dkey in enumerate(dkeys):
                    canvs[key].cd(x + j)
                    plot[key][dkey].Draw('HIST')
                    plot[key][dkey].SetMinimum(5.0e-1)
                    rt.gPad.SetLogy()

        # Draw the canvas
        canvs[key].Draw()

        # Save the canvas as a PDF & PNG image.
        image_name = '_'.join([model_name, key, 'plots'])
        for ext in extensions:
            canvs[key].SaveAs(plotpath + image_name + '.' + ext)

    results = {}
    results['canv'] = canvs
    results['plots'] = plots
    results['curves'] = [mean_curves, mean_curves_zoomed]
    results['legend'] = legends
    return results
Example #9
0
def RocCurves(model_scores, 
              data_labels, 
              roc_fpr, roc_tpr, 
              roc_thresh, roc_auc, 
              indices=[],
              sample_weight=None,
              plotpath = '/', plotname = 'ROC', 
              model_keys = [],
              model_labels = [],
              colors = [],
              drawPlots=True, figsize=(15,5), 
              plotstyle=qu.PlotStyle('dark')):
    
    if(model_keys == []): model_keys = list(model_scores.keys())
    if(model_labels == []): model_labels = model_keys
    if(colors == []): colors = plotstyle.colors
        
    if(len(indices) != len(data_labels)):  indices = np.full(len(data_labels), True, dtype=np.dtype('bool'))
        
    for model_key in model_keys:
        roc_fpr[model_key], roc_tpr[model_key], roc_thresh[model_key] = roc_curve(
            data_labels[indices],
            model_scores[model_key][indices],
            drop_intermediate=False,
            sample_weight=sample_weight
        )
        roc_auc[model_key] = auc(roc_fpr[model_key], roc_tpr[model_key])
        print('Area under curve for {}: {}'.format(model_key, roc_auc[model_key]))
        
    if(not drawPlots): return
    
    # TODO: Sort model_keys by AUC
        
    # Make a plot of the ROC curves
    fig, ax = plt.subplots(1,2,figsize=figsize)
    xlist = [roc_fpr[x] for x in model_keys]
    ylist = [roc_tpr[x] for x in model_keys]
    labels = []
    for i,x in enumerate(model_keys):
        labels.append('{} (area = {:.3f})'.format(model_labels[i], roc_auc[x]))
    
#     labels = ['{} (area = {:.3f})'.format(x, roc_auc[x]) for x in model_keys]
    title = 'ROC curve: classification of $\pi^+$ vs. $\pi^0$'

    pu.roc_plot(ax[0], 
                xlist=xlist, 
                ylist=ylist,
                labels=labels,
                title=title,
                ps=plotstyle,
                colors=colors
                )
    
    #title = 'ROC curve (zoomed in at top left)'
    pu.roc_plot(ax[1], 
                xlist=xlist, 
                ylist=ylist,
                x_min=0. , x_max=0.25,
                y_min=0.6, y_max=1.,
                labels=labels,
                title=title,
                ps=plotstyle,
                colors=colors
                )
    qu.SaveSubplots(fig, ax, [plotname, plotname + '_zoom'], savedir=plotpath, ps=plotstyle)
    plt.show()
    return
Example #10
0
def ImagePlot(pcells, cluster, log=True, dynamic_range=False, layers=[], cell_shapes={}, scaled_shape = [], latex_mpl = {}, plotpath = '', filename = '', plotstyle=qu.PlotStyle('dark')):
    # Set some default values.
    if(layers == []): layers = list(mu.cell_meta.keys())
    if(cell_shapes == {}): cell_shapes = {key: (val['len_eta'],val['len_phi']) for key,val in mu.cell_meta.items()}
    
    if(latex_mpl == {}):
        latex_mpl = {
            'p0': '$\pi^{0}$',
            'pp': '$\pi^{+}$'
        }
    
    scaling = False
    if(scaled_shape != []): scaling = True
    
    fig, ax = plt.subplots(len(pcells.keys()),len(layers),figsize=(60,20))
    fig.patch.set_facecolor(plotstyle.canv_plt)
    i = 0
    for ptype, pcell in pcells.items():
        for layer in layers:
            axis = ax.flatten()[i]
            
            # default behaviour: plot a single cluster
            if(cluster >= 0): image = pcell[layer][cluster].reshape(cell_shapes[layer])
            
            # if cluster index is negative, provide an average image
            else: image = np.mean(pcell[layer],axis=0).reshape(cell_shapes[layer])
            
            if(dynamic_range):
                vmin, vmax = np.min(image), np.max(image)
                vmax = np.maximum(np.abs(vmin),np.abs(vmax))
                vmin = -vmax

                if(vmax == 0. and vmin == 0.):
                    vmax = 0.1
                    vmin = -vmax
                    
            else: vmin, vmax = (-1.,1.)

            norm = TwoSlopeNorm(vmin=vmin,vcenter=0.,vmax=vmax)
            if(log): norm = SymLogNorm(linthresh = 0.001, linscale=0.001, vmin=vmin, vmax=vmax, base=10.)
            cmap = plt.get_cmap('BrBG')
            
            image = pcell[layer][cluster].reshape(cell_shapes[layer])
            if(scaling): 
                # Use our ImageScaleBlock. It requires a 4d tensor, format is [batch,eta,phi,channel].
                image = np.expand_dims(image, axis=(0,-1))
                image = np.squeeze(ImageScaleBlock(new_shape=tuple(scaled_shape), normalization=True)([image]).numpy())
  
            im = axis.imshow(
                image, 
                extent=[-0.2, 0.2, -0.2, 0.2],
                cmap=cmap, 
                origin='lower', 
                interpolation='nearest',
                norm=norm
            )
            #axis.colorbar()
            axis.set_title('{a} in {b}'.format(a=latex_mpl[ptype],b=layer))
            axis.set_xlabel("$\Delta\phi$")
            axis.set_ylabel("$\Delta\eta$")

            plotstyle.SetStylePlt(axis)
            divider = make_axes_locatable(axis)
            cax = divider.append_axes('right', size='5%', pad=0.2)
            cb = fig.colorbar(im, cax=cax, orientation='vertical')
            plt.setp(plt.getp(cb.ax.axes, 'yticklabels'), color=plotstyle.text_plt)
            i += 1
            
    # show the plots
    if(filename != ''): plt.savefig('{}/{}'.format(plotpath,filename),transparent=True,facecolor=plotstyle.canv_plt)
    plt.show()
    return