class SignalProcessor(object): def __init__(self, verbose=False): config = ConfigProvider().getProcessingConfig() self.maxNaNValues = config.get("maxNaNValues") self.lowerFreq = config.get("lowerFreq") self.upperFreq = config.get("upperFreq") self.samplingRate = ConfigProvider().getEmotivConfig().get("samplingRate") self.qualUtil = QualityUtil() self.sigUtil = SignalUtil() self.verbose = verbose def process(self, raw, quality): raw = self._replaceBadQuality(raw, quality) raw = self._replaceSequences(raw) raw = self._replaceOutliners(raw) raw = self._normalize(raw) invalid = self.qualUtil.isInvalidData(raw) return raw, invalid def _replaceBadQuality(self, raw, quality): if self.verbose: print "badQuality: %d" % self.qualUtil.countBadQuality(raw, quality) raw = self.qualUtil.replaceBadQuality(raw, quality, NaN) self._printNaNCount(raw) return raw def _replaceSequences(self, raw): if self.verbose: print "sequences: %d" % self.qualUtil.countSequences(raw) raw = self.qualUtil.replaceSequences(raw) self._printNaNCount(raw) return raw def _replaceOutliners(self, raw): if self.verbose: print "outliners: %d" % self.qualUtil.countOutliners(raw) raw = self.qualUtil.replaceOutliners(raw, NaN) self._printNaNCount(raw) return raw def _normalize(self, raw): if self.verbose: print "normalize: min %.2f max %.2f" % (self.sigUtil.minimum(raw),self.sigUtil.maximum(raw)) raw = self.sigUtil.normalize(raw) if self.verbose: print "normalize: min %.2f max %.2f" % (self.sigUtil.minimum(raw),self.sigUtil.maximum(raw)) self._printNaNCount(raw) return raw def _printNaNCount(self, raw): if self.verbose: print "NaN count: %s" % self.qualUtil.countNans(raw)
class TestSignalUtil(unittest.TestCase): def setUp(self): self.util = SignalUtil() def test_normalize(self): testList = np.array([0, -5, 1, 10]) normList = self.util.normalize(testList) self.assertEqual(len(testList), len(normList)) self.assertTrue(max(normList) <= 1) self.assertTrue(min(normList) >= -1) def test_normalize_value(self): norm = ConfigProvider().getProcessingConfig().get("normalize") testList = np.array([0, -5, 1, 10]) normList = self.util.normalize(testList, norm) self.assertEqual(len(testList), len(normList)) self.assertItemsEqual(normList, testList / norm) def test_normalize_zero(self): testList = np.array([0, 0, 0, 0]) normList = self.util.normalize(testList) self.assertEqual(len(testList), len(normList)) self.assertTrue(max(normList) <= 1) self.assertTrue(min(normList) >= -1) self.assertTrue(sameEntries(testList, normList)) def test_normalize_NaN(self): testList = np.array([np.NaN, -2, -1, 0, np.NaN, 1, 2, np.NaN]) normList = self.util.normalize(testList) self.assertEqual(len(testList), len(normList)) self.assertTrue(np.nanmax(normList) <= 1) self.assertTrue(np.nanmin(normList) >= -1) def test_energy(self): testList = np.array([1, 2, 3, 4]) energy = self.util.energy(testList) self.assertEqual(energy, 30) def test_maximum(self): testList = np.array([-5, 1, 2, 3, 4]) maximum = self.util.maximum(testList) self.assertEqual(maximum, 4) def test_minimum(self): testList = np.array([-5, 1, 2, 3, 6]) minimum = self.util.minimum(testList) self.assertEqual(minimum, -5) def test_mean(self): testList = np.array([0, 1, 2, 3, 4]) mean = self.util.mean(testList) self.assertEqual(mean, 2) def test_var(self): testList = np.array([0, 1, 2, 3, 4]) var = self.util.var(testList) self.assertEqual(var, 2) def test_std(self): testList = np.array([0, 1, 2, 3, 4]) std = self.util.std(testList) self.assertEqual(std, sqrt(self.util.var(testList))) def test_zcr(self): testList = np.array([1, -1, 1, -1, 1]) zcr = self.util.zcr(testList) self.assertEqual(zcr, 4) def test_zcr_zeros(self): testList = np.array([0, 0, 0, 0, 0]) zcr = self.util.zcr(testList) self.assertEqual(zcr, 0) testList = np.array([1, 0, -1, 0, 1, 0, -1]) zcr = self.util.zcr(testList) self.assertEqual(zcr, 3) def test_zcr_zeroChanges(self): testList = np.array([1, 1, 1, 1, 1]) zcr = self.util.zcr(testList) self.assertEqual(zcr, 0) testList = np.array([-1, -1, -1, -1, -1]) zcr = self.util.zcr(testList) self.assertEqual(zcr, 0) def test_nan_onOtherFunctions(self): norm = self.util.normalize(TEST_DATA_NAN) self.assertItemsEqual(np.isnan(norm), np.isnan(TEST_DATA_NAN)) maxi = self.util.maximum(TEST_DATA_NAN) self.assertTrue(np.isnan(maxi)) mini = self.util.minimum(TEST_DATA_NAN) self.assertTrue(np.isnan(mini)) mean = self.util.mean(TEST_DATA_NAN) self.assertTrue(np.isnan(mean)) var = self.util.var(TEST_DATA_NAN) self.assertTrue(np.isnan(var)) std = self.util.std(TEST_DATA_NAN) self.assertTrue(np.isnan(std)) energy = self.util.energy(TEST_DATA_NAN) self.assertTrue(np.isnan(energy)) zcr = self.util.zcr(TEST_DATA_NAN) self.assertTrue(np.isnan(zcr)) def test_mixed_onOtherFunctions(self): norm = self.util.normalize(TEST_DATA_MIXED) self.assertItemsEqual(np.isnan(norm), np.isnan(TEST_DATA_MIXED)) maxi = self.util.maximum(TEST_DATA_MIXED) self.assertEquals(maxi, 1.0) mini = self.util.minimum(TEST_DATA_MIXED) self.assertEquals(mini, 0.0) mean = self.util.mean(TEST_DATA_MIXED) self.assertEquals(mean, 0.5) var = self.util.var(TEST_DATA_MIXED) self.assertEquals(var, 0.25) std = self.util.std(TEST_DATA_MIXED) self.assertEquals(std, 0.5) energy = self.util.energy(TEST_DATA_MIXED) self.assertEquals(energy, 2.0) zcr = self.util.zcr(TEST_DATA_MIXED) self.assertEquals(zcr, 0)