Example #1
0
def eval_cross_section(interactionfile,
                       spinfile,
                       lattice,
                       arg,
                       tau_list,
                       h_list,
                       k_list,
                       l_list,
                       w_vect_list,
                       direction,
                       temperature,
                       kmin,
                       kmax,
                       steps,
                       eief,
                       efixed=14.7):
    """
    Calculates the cross_section given the following parameters:
    interactionfile, spinfile - files to get atom data
    lattice     - Lattice object from tripleaxisproject
    arg         - reduced list of operator combinations
    tau_list    - list of tau position
    w_list      - list of w's probed
    direction   - direction of scan
    temp        - temperature
    kmin        - minimum value of k to scan
    kmax        - maximum value of k to scan
    steps       - number of steps between kmin, kmax
    eief        - True if the energy scheme is Ei - Ef, False if it is Ef - Ei
    efixed      - value of the fixed energy, either Ei or Ef
    """

    # Read files, get atom_list and such
    atom_list, jnums, jmats, N_atoms_uc = readFiles(interactionfile, spinfile)
    N_atoms = len(atom_list)
    N = N_atoms

    # TEMPORARY TO OVERRIDE ATOM_LIST ABOVE
    #    atom1 = atom(pos = [0.00,0,0], neighbors = [1],   interactions = [0], int_cell = [0],
    #                 atomicNum = 26, valence = 3, spinRmatrix=spm.Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
    #    atom2 = atom(pos = [0.25,0,0], neighbors = [0,2], interactions = [0], int_cell = [0],
    #                 atomicNum = 26, valence = 3, spinRmatrix=spm.Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
    #    atom3 = atom(pos = [0.50,0,0], neighbors = [1,3], interactions = [0], int_cell = [0],
    #                 atomicNum = 26, valence = 3, spinRmatrix=spm.Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
    #    atom4 = atom(pos = [0.75,0,0], neighbors = [2],   interactions = [0], int_cell = [0],
    #                 atomicNum = 26, valence = 3, spinRmatrix=spm.Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
    #    atom_list,N_atoms_uc = ([atom1, atom2, atom3, atom4],1)
    N_atoms = len(atom_list)

    # Get Hsave to calculate its eigenvalues
    (Hsave, charpoly, eigs) = calculate_dispersion(atom_list,
                                                   N_atoms_uc,
                                                   N_atoms,
                                                   jmats,
                                                   showEigs=True)
    print "Calculated: Dispersion Relation"

    # Generate kappa's from (h,k,l)
    kaprange = []
    kapvect = []
    if len(h_list) == len(k_list) == len(l_list):
        for i in range(len(h_list)):
            kappa = lattice.modvec(h_list[i], k_list[i], l_list[i],
                                   'latticestar')
            kaprange.append(kappa[0])
            kapvect.append(np.array([h_list[i], k_list[i], l_list[i]]))
#            kapvect.append(np.array([h_list[i]/kappa,k_list[i]/kappa,l_list[i]/kappa]))
    else:
        raise Exception('h,k,l not same lengths')
    # Generate q's from kappa and tau
    pqrange = []
    mqrange = []
    for tau in tau_list:
        ptemp = []
        mtemp = []
        for kap in kapvect:
            #tau = lattice.modvec(tau[0],tau[1],tau[2], 'latticestar')
            ptemp.append(kap - tau)
            mtemp.append(tau - kap)
        pqrange.append(ptemp)
        mqrange.append(mtemp)
    # Calculate w_q's using q
    qrange = []
    #    krange = []
    wrange = []
    if 1:  # Change this later
        for set in pqrange:
            temp = []
            temp1 = []
            for q in set:
                eigs = calc_eigs(Hsave, q[0] * direction['kx'],
                                 q[1] * direction['ky'],
                                 q[2] * direction['kz'])
                # Take only one set of eigs. Should probably have a flag here.
                temp.append(eigs[0])
                #                krange.append(np.array([q*direction['kx'], q*direction['ky'], q*direction['kz']]))
                temp1.append(q)
            wrange.append(temp)
            qrange.append(temp1)
    print "Calculated: Eigenvalues"

    wrange = np.array(np.real(wrange))
    qrange = np.array(np.real(qrange))
    kaprange = np.array(np.real(kaprange))

    print qrange.shape
    print wrange.shape
    print kaprange.shape

    # Calculate w (not _q) as well as kp/k
    w_calc = []
    kpk = []
    if eief == True:
        for tau in tau_list:
            temp = []
            temp1 = []
            for om in w_vect_list:
                temp.append(om - efixed)
                temp1.append(np.sqrt(om / efixed))
            w_calc.append(temp)
            kpk.append(temp1)
    else:
        for tau in tau_list:
            temp = []
            temp1 = []
            for om in w_vect_list:
                temp.append(-(om - efixed))
                temp1.append(np.sqrt(efixed / om))
            w_calc.append(temp)
            kpk.append(temp1)

    w_calc = np.array(np.real(w_calc))

    # Grab Form Factors
    ff_list = []
    s = sp.Symbol('s')
    for i in range(N_atoms):
        el = elements[atom_list[i].atomicNum]
        val = atom_list[i].valence
        if val != None:
            Mq = el.magnetic_ff[val].M_Q(kaprange)
        else:
            Mq = el.magnetic_ff[0].M_Q(kaprange)
        ff_list.append(Mq)
    print "Calculated: Form Factors"

    # Other Constants
    gamr0 = 2 * 0.2695 * 10**(-12)  #sp.Symbol('gamma', commutative = True)
    hbar = 1.0  # 1.05457148*10**(-34) #sp.Symbol('hbar', commutative = True)
    g = 2.  #sp.Symbol('g', commutative = True)
    # Kappa vector
    kap = sp.Symbol(
        'kappa', real=True
    )  #spm.Matrix([sp.Symbol('kapx',real = True),sp.Symbol('kapy',real = True),sp.Symbol('kapz',real = True)])
    t = sp.Symbol('t', real=True)
    w = sp.Symbol('w', real=True)
    W = sp.Symbol('W', real=True)
    tau = sp.Symbol('tau', real=True)
    q = sp.Symbol('q', real=True)
    L = sp.Symbol('L', real=True)
    boltz = 1.  #1.3806503*10**(-23)

    # Wilds for sub_in method
    A = sp.Wild('A', exclude=[0, t])
    B = sp.Wild('B', exclude=[0, t])
    C = sp.Wild('C')
    D = sp.Wild('D')
    K = sp.Wild('K')

    # First the exponentials are turned into delta functions:
    for i in range(len(arg)):
        for j in range(N):
            print '1', arg[i][j]
            arg[i][j] = sp.powsimp(
                arg[i]
                [j])  #sp.powsimp(arg[i][j], deep = True, combine = 'all')
            arg[i][j] = (
                arg[i][j] * exp(-I * w * t) * exp(I * kap * L)).expand(
                )  # * exp(I*inner_prod(spm.Matrix(atom_list[j].pos).T,kap))
            arg[i][j] = sp.powsimp(
                arg[i]
                [j])  #sp.powsimp(arg[i][j], deep = True, combine = 'all')
            #            print '2', arg[i][j]
            arg[i][j] = sub_in(
                arg[i][j], exp(I * t * A + I * t * B + I * C + I * D + I * K),
                sp.DiracDelta(A * t + B * t + C + D + K))  #*sp.DiracDelta(C))
            #            print '3', arg[i][j]
            arg[i][j] = sub_in(
                arg[i][j],
                sp.DiracDelta(A * t + B * t + C * L + D * L + K * L),
                sp.DiracDelta(A * hbar + B * hbar) *
                sp.simplify(sp.DiracDelta(C + D + K + tau)))
            #            print '4', arg[i][j]
            arg[i][j] = sub_in(arg[i][j],
                               sp.DiracDelta(-A - B) * sp.DiracDelta(C),
                               sp.DiracDelta(A + B) * sp.DiracDelta(C))
            print '5', arg[i][j]
    print "Applied: Delta Function Conversion"

    # Grabs the unit vectors from the back of the lists.
    unit_vect = []
    kapxhat = sp.Symbol('kapxhat', commutative=False)
    kapyhat = sp.Symbol('kapyhat', commutative=False)
    kapzhat = sp.Symbol('kapzhat', commutative=False)
    for i in range(len(arg)):
        unit_vect.append(arg[i].pop())

    # Subs the actual values for kx,ky,kz, omega_q and n_q into the operator combos
    # The result is basically a nested list:
    #
    #    csdata     = [ op combos ]
    #    op combos  = [ one combo per atom ]
    #    1 per atom = [ evaluated exp ]
    #

    csdata = []
    for i in range(len(arg)):
        temp1 = []
        for j in range(len(arg[i])):
            temp2 = []
            for k in range(len(tau_list)):
                temp3 = []
                print i, j, k
                for g in range(len(qrange[k])):
                    pvalue = tau_list[k] + kapvect[g] + qrange[k][g]
                    mvalue = tau_list[k] + kapvect[g] - qrange[k][g]
                    if pvalue[0] == 0 and pvalue[1] == 0 and pvalue[2] == 0:
                        arg[i][j] = arg[i][j].subs(
                            sp.DiracDelta(kap + tau + q), sp.DiracDelta(0))
                    else:
                        arg[i][j] = arg[i][j].subs(
                            sp.DiracDelta(kap + tau + q), 0)
                    if mvalue[0] == 0 and mvalue[1] == 0 and mvalue[2] == 0:
                        arg[i][j] = arg[i][j].subs(
                            sp.DiracDelta(kap + tau - q), sp.DiracDelta(0))
                    else:
                        arg[i][j] = arg[i][j].subs(
                            sp.DiracDelta(kap + tau - q), 0)
                    wq = sp.Symbol('wq', real=True)
                    nq = sp.Symbol('n%i' % (k, ), commutative=False)
                    arg[i][j] = arg[i][j].subs(wq, wrange[k][g])
                    arg[i][j] = arg[i][j].subs(w, w_calc[k][g])
                    n = sp.Pow(
                        sp.exp(hbar * wrange[k][g] / boltz * temperature) - 1,
                        -1)
                    arg[i][j] = arg[i][j].subs(nq, n)
                    temp3.append(arg[i][j])
                temp2.append(temp3)
            temp1.append(temp2)
        csdata.append(temp1)
##            print arg[i][j]
#            for g in range(len(kaprange)):
#                arg[i][j] = arg[i][j].subs(kap, kaprange[g])
#            for g in range(len(krange)):
##                print 'calculating'
#                temp3 = []
#                wg = sp.Symbol('w%i'%(g,), real = True)
#                ng = sp.Symbol('n%i'%(g,), commutative = False)
##                kx = sp.Symbol('kx', real = True, commutative = True)
##                ky = sp.Symbol('ky', real = True, commutative = True)
##                kz = sp.Symbol('kz', real = True, commutative = True)
##                arg[i][j] = arg[i][j].subs(kx,krange[g][0])
##                arg[i][j] = arg[i][j].subs(ky,krange[g][1])
##                arg[i][j] = arg[i][j].subs(kz,krange[g][2])
#                arg[i][j] = arg[i][j].subs(wg,wrange[g])
#                arg[i][j] = arg[i][j].subs(w,w_calc[g])
#                nq = sp.Pow( sp.exp(hbar*wrange[g]/boltz*temp) - 1 ,-1)
#                arg[i][j] = arg[i][j].subs(ng,nq)
##                arg[i][j] = arg[i][j].subs(tau,tau_list[0])
#
#                temp3.append(arg[i][j])
##                print arg[i][j]
#            temp2.append(temp3)
##            print arg[i][j]
#        csdata.append(temp2)

    print csdata

    # Front constants and stuff for the cross-section
    front_constant = 1.0  # (gamr0)**2/(2*pi*hbar)
    front_func = (1. / 2.) * g  #*F(k)
    vanderwaals = 1.  #exp(-2*W)

    csrange = []
    if 1:
        temp1 = []
        temp2 = []
        for q in range(len(qrange)):
            print 'calculating'
            for ii in range(len(csdata)):
                for jj in range(len(csdata[ii])):
                    temp1.append(csdata[ii][jj])
            # Put on gamr0, 2pi hbar, form factor, kp/k, vanderwaals first
            dif = front_func**2 * front_constant  # * kpk[q][0] * vanderwaals * ff_list[0][q]
            #            for vect in unit_vect:
            #                vect.subs(kapxhat,kapvect[q][0][0])
            #                vect.subs(kapyhat,kapvect[q][1][0])
            #                vect.subs(kapzhat,kapvect[q][2][0])
            print 'diff', dif
            print 'temp1', temp1
            print sum(temp1)
            dif = (dif * sum(temp1))  # * sum(unit_vect))#.expand()
            csrange.append(dif)
    print "Calculated: Cross-section"
    csrange = np.real(csrange)
    csrange = np.array(csrange)

    xi = qrange
    yi = wrange
    zi = csrange
    Z = np.zeros((xi.shape[0], yi.shape[0]))
    Z[range(len(xi)), range(len(yi))] = zi

    pylab.contourf(xi, yi, Z)
    pylab.colorbar()
    pylab.show()
Example #2
0
def eval_cross_section(interactionfile, spinfile, lattice, arg, 
                       tau_list, h_list, k_list, l_list, w_vect_list, 
                       direction, temperature, kmin, kmax, steps, eief, efixed = 14.7):
    """
    Calculates the cross_section given the following parameters:
    interactionfile, spinfile - files to get atom data
    lattice     - Lattice object from tripleaxisproject
    arg         - reduced list of operator combinations
    tau_list    - list of tau position
    w_list      - list of w's probed
    direction   - direction of scan
    temp        - temperature
    kmin        - minimum value of k to scan
    kmax        - maximum value of k to scan
    steps       - number of steps between kmin, kmax
    eief        - True if the energy scheme is Ei - Ef, False if it is Ef - Ei
    efixed      - value of the fixed energy, either Ei or Ef
    """

    # Read files, get atom_list and such
    atom_list, jnums, jmats,N_atoms_uc=readFiles(interactionfile,spinfile)
    N_atoms = len(atom_list)
    N = N_atoms

    # TEMPORARY TO OVERRIDE ATOM_LIST ABOVE
#    atom1 = atom(pos = [0.00,0,0], neighbors = [1],   interactions = [0], int_cell = [0], 
#                 atomicNum = 26, valence = 3, spinRmatrix=spm.Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
#    atom2 = atom(pos = [0.25,0,0], neighbors = [0,2], interactions = [0], int_cell = [0], 
#                 atomicNum = 26, valence = 3, spinRmatrix=spm.Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
#    atom3 = atom(pos = [0.50,0,0], neighbors = [1,3], interactions = [0], int_cell = [0], 
#                 atomicNum = 26, valence = 3, spinRmatrix=spm.Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
#    atom4 = atom(pos = [0.75,0,0], neighbors = [2],   interactions = [0], int_cell = [0], 
#                 atomicNum = 26, valence = 3, spinRmatrix=spm.Matrix([[1, 0, 0],[0, 1, 0],[0, 0, 1]]))
#    atom_list,N_atoms_uc = ([atom1, atom2, atom3, atom4],1)
    N_atoms = len(atom_list)

    # Get Hsave to calculate its eigenvalues
    (Hsave, charpoly, eigs) = calculate_dispersion(atom_list,N_atoms_uc,N_atoms,jmats,showEigs=True)
    print "Calculated: Dispersion Relation"

    # Generate kappa's from (h,k,l)
    kaprange = []
    kapvect = []
    if len(h_list) == len(k_list) == len(l_list):
        for i in range(len(h_list)):
            kappa = lattice.modvec(h_list[i],k_list[i],l_list[i], 'latticestar')
            kaprange.append(kappa[0])
            kapvect.append(np.array([h_list[i],k_list[i],l_list[i]]))
#            kapvect.append(np.array([h_list[i]/kappa,k_list[i]/kappa,l_list[i]/kappa]))
    else:
        raise Exception('h,k,l not same lengths')
    # Generate q's from kappa and tau
    pqrange = []
    mqrange = []
    for tau in tau_list:
        ptemp = []
        mtemp = []
        for kap in kapvect:
            #tau = lattice.modvec(tau[0],tau[1],tau[2], 'latticestar')
            ptemp.append(kap - tau)
            mtemp.append(tau - kap)
        pqrange.append(ptemp)
        mqrange.append(mtemp)
    # Calculate w_q's using q
    qrange = []
#    krange = []
    wrange = []
    if 1: # Change this later
        for set in pqrange:
            temp = []
            temp1 = [] 
            for q in set:
                eigs = calc_eigs(Hsave,q[0]*direction['kx'], q[1]*direction['ky'], q[2]*direction['kz'])
                # Take only one set of eigs. Should probably have a flag here. 
                temp.append(eigs[0])
#                krange.append(np.array([q*direction['kx'], q*direction['ky'], q*direction['kz']]))
                temp1.append(q)
            wrange.append(temp)
            qrange.append(temp1)
    print "Calculated: Eigenvalues"
    
    wrange=np.array(np.real(wrange))
    qrange=np.array(np.real(qrange))
    kaprange=np.array(np.real(kaprange))
    
    print qrange.shape
    print wrange.shape
    print kaprange.shape
    
    # Calculate w (not _q) as well as kp/k
    w_calc = []
    kpk = []
    if eief == True:
        for tau in tau_list:
            temp = []
            temp1 = []
            for om in w_vect_list:
                temp.append(om - efixed)
                temp1.append(np.sqrt(om/efixed))
            w_calc.append(temp)
            kpk.append(temp1)                
    else:
        for tau in tau_list:
            temp = []
            temp1 = []
            for om in w_vect_list:
                temp.append(-(om - efixed))
                temp1.append(np.sqrt(efixed/om))
            w_calc.append(temp)
            kpk.append(temp1)

    w_calc = np.array(np.real(w_calc))
    

    # Grab Form Factors
    ff_list = []
    s = sp.Symbol('s')
    for i in range(N_atoms):
        el = elements[atom_list[i].atomicNum]
        val = atom_list[i].valence
        if val != None:
            Mq = el.magnetic_ff[val].M_Q(kaprange)
        else:
            Mq = el.magnetic_ff[0].M_Q(kaprange)
        ff_list.append(Mq)
    print "Calculated: Form Factors"

    # Other Constants
    gamr0 = 2*0.2695*10**(-12) #sp.Symbol('gamma', commutative = True)
    hbar = 1.0 # 1.05457148*10**(-34) #sp.Symbol('hbar', commutative = True)
    g = 2.#sp.Symbol('g', commutative = True)
    # Kappa vector
    kap = sp.Symbol('kappa', real = True)#spm.Matrix([sp.Symbol('kapx',real = True),sp.Symbol('kapy',real = True),sp.Symbol('kapz',real = True)])
    t = sp.Symbol('t', real = True)
    w = sp.Symbol('w', real = True)
    W = sp.Symbol('W', real = True)
    tau = sp.Symbol('tau', real = True)
    q = sp.Symbol('q', real = True)
    L = sp.Symbol('L', real = True)
    boltz = 1.#1.3806503*10**(-23)     
    
    # Wilds for sub_in method
    A = sp.Wild('A',exclude = [0,t])
    B = sp.Wild('B',exclude = [0,t])
    C = sp.Wild('C')
    D = sp.Wild('D')
    K = sp.Wild('K')

    # First the exponentials are turned into delta functions:
    for i in range(len(arg)):
        for j in range(N):
            print '1', arg[i][j]
            arg[i][j] = sp.powsimp(arg[i][j])#sp.powsimp(arg[i][j], deep = True, combine = 'all')
            arg[i][j] = (arg[i][j] * exp(-I*w*t) * exp(I*kap*L)).expand()# * exp(I*inner_prod(spm.Matrix(atom_list[j].pos).T,kap))
            arg[i][j] = sp.powsimp(arg[i][j])#sp.powsimp(arg[i][j], deep = True, combine = 'all')
#            print '2', arg[i][j]
            arg[i][j] = sub_in(arg[i][j],exp(I*t*A + I*t*B + I*C + I*D + I*K),sp.DiracDelta(A*t + B*t + C + D + K))#*sp.DiracDelta(C))
#            print '3', arg[i][j]
            arg[i][j] = sub_in(arg[i][j],sp.DiracDelta(A*t + B*t + C*L + D*L + K*L),sp.DiracDelta(A*hbar + B*hbar)*sp.simplify(sp.DiracDelta(C + D + K + tau)))
#            print '4', arg[i][j]
            arg[i][j] = sub_in(arg[i][j],sp.DiracDelta(-A - B)*sp.DiracDelta(C),sp.DiracDelta(A + B)*sp.DiracDelta(C))
            print '5', arg[i][j]
    print "Applied: Delta Function Conversion"

    # Grabs the unit vectors from the back of the lists. 
    unit_vect = []
    kapxhat = sp.Symbol('kapxhat',commutative = False)
    kapyhat = sp.Symbol('kapyhat',commutative = False)
    kapzhat = sp.Symbol('kapzhat',commutative = False)
    for i in range(len(arg)):
        unit_vect.append(arg[i].pop())

    # Subs the actual values for kx,ky,kz, omega_q and n_q into the operator combos
    # The result is basically a nested list:
    #
    #    csdata     = [ op combos ]
    #    op combos  = [ one combo per atom ]
    #    1 per atom = [ evaluated exp ]
    #
    
    csdata = []
    for i in range(len(arg)):
        temp1 = []
        for j in range(len(arg[i])):
            temp2 = []
            for k in range(len(tau_list)):
                temp3 = []
                print i,j,k
                for g in range(len(qrange[k])):
                    pvalue = tau_list[k] + kapvect[g] + qrange[k][g]
                    mvalue = tau_list[k] + kapvect[g] - qrange[k][g]
                    if pvalue[0] == 0 and pvalue[1] == 0 and pvalue[2] == 0:
                        arg[i][j] = arg[i][j].subs(sp.DiracDelta(kap+tau+q),sp.DiracDelta(0))
                    else: arg[i][j] = arg[i][j].subs(sp.DiracDelta(kap+tau+q),0)
                    if mvalue[0] == 0 and mvalue[1] == 0 and mvalue[2] == 0:
                        arg[i][j] = arg[i][j].subs(sp.DiracDelta(kap+tau-q),sp.DiracDelta(0))
                    else: arg[i][j] = arg[i][j].subs(sp.DiracDelta(kap+tau-q),0)               
                    wq = sp.Symbol('wq', real = True)
                    nq = sp.Symbol('n%i'%(k,), commutative = False)
                    arg[i][j] = arg[i][j].subs(wq,wrange[k][g])
                    arg[i][j] = arg[i][j].subs(w,w_calc[k][g])
                    n = sp.Pow( sp.exp(hbar*wrange[k][g]/boltz*temperature) - 1 ,-1)
                    arg[i][j] = arg[i][j].subs(nq,n)
                    temp3.append(arg[i][j])
                temp2.append(temp3)
            temp1.append(temp2)
        csdata.append(temp1)
##            print arg[i][j]
#            for g in range(len(kaprange)):
#                arg[i][j] = arg[i][j].subs(kap, kaprange[g])
#            for g in range(len(krange)):
##                print 'calculating'
#                temp3 = []
#                wg = sp.Symbol('w%i'%(g,), real = True)
#                ng = sp.Symbol('n%i'%(g,), commutative = False)
##                kx = sp.Symbol('kx', real = True, commutative = True)
##                ky = sp.Symbol('ky', real = True, commutative = True)
##                kz = sp.Symbol('kz', real = True, commutative = True)
##                arg[i][j] = arg[i][j].subs(kx,krange[g][0])
##                arg[i][j] = arg[i][j].subs(ky,krange[g][1])
##                arg[i][j] = arg[i][j].subs(kz,krange[g][2])
#                arg[i][j] = arg[i][j].subs(wg,wrange[g])
#                arg[i][j] = arg[i][j].subs(w,w_calc[g])
#                nq = sp.Pow( sp.exp(hbar*wrange[g]/boltz*temp) - 1 ,-1)
#                arg[i][j] = arg[i][j].subs(ng,nq)
##                arg[i][j] = arg[i][j].subs(tau,tau_list[0])
#
#                temp3.append(arg[i][j])
##                print arg[i][j]
#            temp2.append(temp3)
##            print arg[i][j]
#        csdata.append(temp2)

    print csdata


    # Front constants and stuff for the cross-section
    front_constant = 1.0 # (gamr0)**2/(2*pi*hbar)
    front_func = (1./2.)*g#*F(k)
    vanderwaals = 1. #exp(-2*W)

    csrange = []
    if 1:
        temp1 = []
        temp2 = []
        for q in range(len(qrange)):
            print 'calculating'
            for ii in range(len(csdata)):
                for jj in range(len(csdata[ii])):
                    temp1.append(csdata[ii][jj])
            # Put on gamr0, 2pi hbar, form factor, kp/k, vanderwaals first
            dif = front_func**2 * front_constant# * kpk[q][0] * vanderwaals * ff_list[0][q]
#            for vect in unit_vect:
#                vect.subs(kapxhat,kapvect[q][0][0])
#                vect.subs(kapyhat,kapvect[q][1][0])
#                vect.subs(kapzhat,kapvect[q][2][0])
            print 'diff',dif
            print 'temp1',temp1
            print sum(temp1)
            dif = (dif * sum(temp1))# * sum(unit_vect))#.expand()
            csrange.append(dif)
    print "Calculated: Cross-section"
    csrange=np.real(csrange)
    csrange=np.array(csrange)

    xi=qrange
    yi=wrange
    zi=csrange
    Z=np.zeros((xi.shape[0],yi.shape[0])) 
    Z[range(len(xi)),range(len(yi))]=zi

    pylab.contourf(xi,yi,Z)
    pylab.colorbar()
    pylab.show()
Example #3
0
def generate_cross_section(atom_list, arg, q, real_list, recip_list):
    """Generates the Cross-Section Formula for the one magnon case"""
    N = len(atom_list)
    gam = 1.913  #sp.Symbol('gamma', commutative = True)
    r = sp.Symbol('r0', commutative=True)
    h = 1.  # 1.05457148*10**(-34) #sp.Symbol('hbar', commutative = True)
    k = sp.Symbol('k', commutative=True)
    kp = sp.Symbol('kp', commutative=True)
    g = sp.Symbol('g', commutative=True)
    F = sp.Function('F')

    def FF(arg):
        F = sp.Function('F')
        if arg.shape == (3, 1) or arg.shape == (1, 3):
            return sp.Symbol("%r" % (F(arg.tolist()), ), commutative=False)

    kap = spm.Matrix([
        sp.Symbol('kapx', commutative=False),
        sp.Symbol('kapy', commutative=False),
        sp.Symbol('kapz', commutative=False)
    ])
    t = sp.Symbol('t', commutative=True)
    w = sp.Symbol('w', commutative=True)
    W = sp.Symbol('W', commutative=False)
    kappa = sp.Symbol('kappa', commutative=False)
    tau = sp.Symbol('tau', commutative=False)

    # Wilds for sub_in method
    A = sp.Wild('A', exclude=[0])
    B = sp.Wild('B', exclude=[0])
    C = sp.Wild('C')
    D = sp.Wild('D')

    front_constant = (gam * r)**2 / (2 * pi * h) * (kp / k) * N
    front_func = (1. / 2.) * g  #*F(k)
    vanderwaals = exp(-2 * W)

    temp2 = []
    temp3 = []
    temp4 = []

    # Grabs the unit vectors from the back of the lists.
    unit_vect = []
    kapx = sp.Symbol('kapxhat', )
    kapy = sp.Symbol('kapyhat', commutative=False)
    kapz = sp.Symbol('kapzhat', commutative=False)
    for i in range(len(arg)):
        unit_vect.append(arg[i].pop())
#    for ele in unit_vect:
#        ele = ele.subs(kapx,spm.Matrix([1,0,0]))
#        ele = ele.subs(kapy,spm.Matrix([0,1,0]))
#        ele = ele.subs(kapz,spm.Matrix([0,0,1]))
# This is were the heart of the calculation comes in.
# First the exponentials are turned into delta functions:
    for i in range(len(arg)):
        for j in range(N):
            arg[i][j] = sp.powsimp(arg[i][j], deep=True, combine='all')
            arg[i][j] = arg[i][j] * exp(-I * w * t) * exp(
                I * inner_prod(spm.Matrix(atom_list[j].pos).T, kap))
            arg[i][j] = sp.powsimp(arg[i][j], deep=True, combine='all')
            arg[i][j] = sub_in(arg[i][j], exp(I * t * A + I * t * B + C),
                               sp.DiracDelta(A * t + B * t +
                                             C / I))  #*sp.DiracDelta(C))
            arg[i][j] = sub_in(
                arg[i][j], sp.DiracDelta(A * t + B * t + C),
                sp.DiracDelta(A * h + B * h) * sp.DiracDelta(C + tau))
            arg[i][j] = sub_in(arg[i][j], sp.DiracDelta(-A - B),
                               sp.DiracDelta(A + B))
            print arg[i][j]
    print "Applied: Delta Function Conversion"

    #    for ele in arg:
    #        for subele in ele:
    #            temp2.append(subele)
    #        temp3.append(sum(temp2))
    #
    #    for i in range(len(temp3)):
    #        temp4.append(unit_vect[i] * temp3[i])

    for k in range(len(arg)):
        temp4.append(arg[k][q])
    dif = (front_func**2 * front_constant * vanderwaals * sum(temp4)
           )  #.expand()#sp.simplify(sum(temp4))).expand()

    print "Complete: Cross-section Calculation"
    return dif
Example #4
0
def generate_cross_section(atom_list, arg, q, real_list, recip_list):
    """Generates the Cross-Section Formula for the one magnon case"""
    N = len(atom_list)
    gam = 1.913 #sp.Symbol('gamma', commutative = True)
    r = sp.Symbol('r0', commutative = True)
    h = 1. # 1.05457148*10**(-34) #sp.Symbol('hbar', commutative = True)
    k = sp.Symbol('k', commutative = True)
    kp = sp.Symbol('kp', commutative = True)
    g = sp.Symbol('g', commutative = True)
    F = sp.Function('F')
    def FF(arg):
        F = sp.Function('F')
        if arg.shape == (3,1) or arg.shape == (1,3):
            return sp.Symbol("%r"%(F(arg.tolist()),),commutative = False)
    kap = spm.Matrix([sp.Symbol('kapx',commutative = False),sp.Symbol('kapy',commutative = False),sp.Symbol('kapz',commutative = False)])
    t = sp.Symbol('t', commutative = True)
    w = sp.Symbol('w', commutative = True)
    W = sp.Symbol('W', commutative = False)
    kappa = sp.Symbol('kappa', commutative = False)
    tau = sp.Symbol('tau', commutative = False)
    
    # Wilds for sub_in method
    A = sp.Wild('A',exclude = [0]); B = sp.Wild('B',exclude = [0]); C = sp.Wild('C'); D = sp.Wild('D'); 
    
    front_constant = (gam*r)**2/(2*pi*h)*(kp/k)*N
    front_func = (1./2.)*g#*F(k)
    vanderwaals = exp(-2*W)

    temp2 = []
    temp3 = []
    temp4 = []
    
    # Grabs the unit vectors from the back of the lists. 
    unit_vect = []
    kapx = sp.Symbol('kapxhat',)
    kapy = sp.Symbol('kapyhat',commutative = False)
    kapz = sp.Symbol('kapzhat',commutative = False)
    for i in range(len(arg)):
        unit_vect.append(arg[i].pop())
#    for ele in unit_vect:
#        ele = ele.subs(kapx,spm.Matrix([1,0,0]))
#        ele = ele.subs(kapy,spm.Matrix([0,1,0]))
#        ele = ele.subs(kapz,spm.Matrix([0,0,1]))
    # This is were the heart of the calculation comes in.
    # First the exponentials are turned into delta functions:
    for i in range(len(arg)):
        for j in range(N):
            arg[i][j] = sp.powsimp(arg[i][j], deep = True, combine = 'all')
            arg[i][j] = arg[i][j] * exp(-I*w*t) * exp(I*inner_prod(spm.Matrix(atom_list[j].pos).T,kap))
            arg[i][j] = sp.powsimp(arg[i][j], deep = True, combine = 'all')
            arg[i][j] = sub_in(arg[i][j],exp(I*t*A + I*t*B + C),sp.DiracDelta(A*t + B*t + C/I))#*sp.DiracDelta(C))
            arg[i][j] = sub_in(arg[i][j],sp.DiracDelta(A*t + B*t + C),sp.DiracDelta(A*h + B*h)*sp.DiracDelta(C + tau))
            arg[i][j] = sub_in(arg[i][j],sp.DiracDelta(-A - B),sp.DiracDelta(A + B))
            print arg[i][j]
    print "Applied: Delta Function Conversion"
    
#    for ele in arg:
#        for subele in ele:
#            temp2.append(subele)
#        temp3.append(sum(temp2))
#    
#    for i in range(len(temp3)):
#        temp4.append(unit_vect[i] * temp3[i])

    for k in range(len(arg)):
        temp4.append(arg[k][q])
    dif = (front_func**2 * front_constant * vanderwaals * sum(temp4))#.expand()#sp.simplify(sum(temp4))).expand()

    print "Complete: Cross-section Calculation"
    return dif