Example #1
0
def get_classification_outputs(FLAGS, features, is_training):
    """Loss for downstream classification tasks."""
    input_ids = features["input_ids"]
    seg_id = features["segment_ids"]
    input_mask_int = tf.cast(tf.cast(input_ids, tf.bool), tf.int32)
    input_mask = 1 - tf.cast(input_mask_int, tf.float32)
    num_choices = FLAGS.num_choices
    batch_size = tf.shape(features["input_ids"])[0]

    def _transform_features(feature):
        out = tf.reshape(feature, [batch_size, num_choices, -1])
        out = tf.transpose(out, [2, 0, 1])
        out = tf.reshape(out, [-1, batch_size * num_choices])
        return out

    if num_choices:
        input_ids = _transform_features(input_ids)
        seg_id = _transform_features(seg_id)
        input_mask = _transform_features(input_mask)
    else:
        input_ids = tf.transpose(input_ids, [1, 0])
        seg_id = tf.transpose(seg_id, [1, 0])
        input_mask = tf.transpose(input_mask, [1, 0])

    xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
    run_config = xlnet.create_run_config(is_training, True, FLAGS)

    xlnet_model = xlnet.XLNetModel(
        xlnet_config=xlnet_config,
        run_config=run_config,
        input_ids=input_ids,
        seg_ids=seg_id,
        input_mask=input_mask)
    summary = xlnet_model.get_pooled_out(FLAGS.summary_type,
                                         FLAGS.use_summ_proj)
    initializer = xlnet_model.get_initializer()
    return_dict = {}
    with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
        with tf.variable_scope("answer_class"):
            # race has 4 classes,
            # boolq has 2 classes
            if num_choices:
                num_classes = 1
            else:
                num_classes = FLAGS.num_classes
            cls_logits = tf.layers.dense(summary, num_classes,
                                         kernel_initializer=initializer,
                                         name="cls")
            if num_choices:
                cls_logits = tf.reshape(cls_logits, [batch_size, num_choices])
            cls_log_probs = tf.nn.log_softmax(cls_logits, -1)
    if is_training:
        return_dict["cls_log_probs"] = cls_log_probs
    return_dict["cls_logits"] = cls_logits

    return return_dict
Example #2
0
def multihead_attn(q,
                   k,
                   v,
                   attn_mask,
                   d_model,
                   n_head,
                   d_head,
                   dropout,
                   dropatt,
                   is_training,
                   kernel_initializer,
                   residual=True,
                   scope='abs_attn',
                   reuse=None):
    """Standard multi-head attention with absolute positional embedding."""

    scale = 1 / (d_head**0.5)
    with tf.variable_scope(scope, reuse=reuse):
        # attention heads
        q_head = head_projection(q, d_model, n_head, d_head,
                                 kernel_initializer, 'q')
        k_head = head_projection(k, d_model, n_head, d_head,
                                 kernel_initializer, 'k')
        v_head = head_projection(v, d_model, n_head, d_head,
                                 kernel_initializer, 'v')

        # attention vector
        attn_vec = abs_attn_core(q_head, k_head, v_head, attn_mask, dropatt,
                                 is_training, scale)

        # post processing
        output = post_attention(v, attn_vec, d_model, n_head, d_head, dropout,
                                is_training, kernel_initializer, residual)

    return output
Example #3
0
def classification_loss(hidden,
                        labels,
                        n_class,
                        initializer,
                        scope,
                        reuse=None,
                        return_logits=False):
    """
        Different classification tasks should use different scope names to ensure
        different dense layers (parameters) are used to produce the logits.

        An exception will be in transfer learning, where one hopes to transfer
        the classification weights.
    """

    with tf.variable_scope(scope, reuse=reuse):
        logits = tf.layers.dense(hidden,
                                 n_class,
                                 kernel_initializer=initializer,
                                 name='logit')

        one_hot_target = tf.one_hot(labels, n_class, dtype=hidden.dtype)
        loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1)

        if return_logits:
            return loss, logits

        return loss
Example #4
0
    def get_pooled_out(self, summary_type, use_summ_proj=True):
        """
        Args:
          summary_type: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation.
          use_summ_proj: bool, whether to use a linear projection during pooling.

        Returns:
          float32 Tensor in shape [bsz, d_model], the pooled representation.
        """

        xlnet_config = self.xlnet_config
        run_config = self.run_config

        with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
            summary = modeling.summarize_sequence(
                summary_type=summary_type,
                hidden=self.output,
                d_model=xlnet_config.d_model,
                n_head=xlnet_config.n_head,
                d_head=xlnet_config.d_head,
                dropout=run_config.dropout,
                dropatt=run_config.dropatt,
                is_training=run_config.is_training,
                input_mask=self.input_mask,
                initializer=self.initializer,
                use_proj=use_summ_proj)

        return summary
Example #5
0
def rel_multihead_attn(h,
                       r,
                       r_w_bias,
                       r_r_bias,
                       seg_mat,
                       r_s_bias,
                       seg_embed,
                       attn_mask,
                       mems,
                       d_model,
                       n_head,
                       d_head,
                       dropout,
                       dropatt,
                       is_training,
                       kernel_initializer,
                       scope='rel_attn',
                       reuse=None):
    """Multi-head attention with relative positional encoding."""

    scale = 1 / (d_head**0.5)
    with tf.variable_scope(scope, reuse=reuse):
        if mems is not None and mems.shape.ndims > 1:
            cat = tf.concat([mems, h], 0)
        else:
            cat = h

        # content heads
        q_head_h = head_projection(h, d_model, n_head, d_head,
                                   kernel_initializer, 'q')
        k_head_h = head_projection(cat, d_model, n_head, d_head,
                                   kernel_initializer, 'k')
        v_head_h = head_projection(cat, d_model, n_head, d_head,
                                   kernel_initializer, 'v')

        # positional heads
        k_head_r = head_projection(r, d_model, n_head, d_head,
                                   kernel_initializer, 'r')

        # core attention ops
        attn_vec = rel_attn_core(q_head_h, k_head_h, v_head_h, k_head_r,
                                 seg_embed, seg_mat, r_w_bias, r_r_bias,
                                 r_s_bias, attn_mask, dropatt, is_training,
                                 scale)

        # post processing
        output = post_attention(h, attn_vec, d_model, n_head, d_head, dropout,
                                is_training, kernel_initializer)

    return output
Example #6
0
def clean_ckpt(_):
    input_ckpt = FLAGS.clean_input_ckpt
    output_model_dir = FLAGS.clean_output_model_dir

    tf.reset_default_graph()

    var_list = tf.contrib.framework.list_variables(input_ckpt)
    var_values, var_dtypes = {}, {}
    for (name, shape) in var_list:
        if not name.startswith("global_step") and "adam" not in name.lower():
            var_values[name] = None
            logger.info("Include {}".format(name))
        else:
            logger.info("Exclude {}".format(name))

    logger.info("Loading from {}".format(input_ckpt))
    reader = tf.contrib.framework.load_checkpoint(input_ckpt)
    for name in var_values:
        tensor = reader.get_tensor(name)
        var_dtypes[name] = tensor.dtype
        var_values[name] = tensor

    with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
        tf_vars = [
            tf.get_variable(v, shape=var_values[v].shape, dtype=var_dtypes[v])
            for v in var_values
        ]
    placeholders = [tf.placeholder(v.dtype, shape=v.shape) for v in tf_vars]
    assign_ops = [tf.assign(v, p) for (v, p) in zip(tf_vars, placeholders)]
    global_step = tf.Variable(0,
                              name="global_step",
                              trainable=False,
                              dtype=tf.int64)
    saver = tf.train.Saver(tf.all_variables())

    if not tf.gfile.Exists(output_model_dir):
        tf.gfile.MakeDirs(output_model_dir)

    # Build a model consisting only of variables, set them to the average values.
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())
        for p, assign_op, (name, value) in zip(placeholders, assign_ops,
                                               six.iteritems(var_values)):
            sess.run(assign_op, {p: value})

        # Use the built saver to save the averaged checkpoint.
        saver.save(sess,
                   join(output_model_dir, "model.ckpt"),
                   global_step=global_step)
Example #7
0
def get_decomposed_classification_outputs(FLAGS, features, is_training):
    seq1_ids = features["seq1_ids"]
    seq2_ids = features["seq2_ids"]
    seq_len = FLAGS.max_seq_length
    first_seq_len = FLAGS.max_first_length + 2
    second_seq_len = seq_len - first_seq_len
    seq1_attn_mask = get_attention_mask(seq1_ids, first_seq_len)
    seq2_attn_mask = get_attention_mask(seq2_ids, second_seq_len)
    seq_attn_mask = get_attention_mask(tf.concat([seq2_ids, seq1_ids], axis=0),
                                       seq_len)

    xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
    run_config = xlnet.create_run_config(is_training, True, FLAGS)
    initializer = xlnet._get_initializer(run_config)
    tfm_args = dict(
        n_token=xlnet_config.n_token,
        initializer=initializer,
        attn_type="bi",
        n_layer=xlnet_config.n_layer,
        d_model=xlnet_config.d_model,
        n_head=xlnet_config.n_head,
        d_head=xlnet_config.d_head,
        d_inner=xlnet_config.d_inner,
        ff_activation=xlnet_config.ff_activation,
        untie_r=xlnet_config.untie_r,
        is_training=run_config.is_training,
        use_bfloat16=run_config.use_bfloat16,
        use_tpu=run_config.use_tpu,
        dropout=run_config.dropout,
        dropatt=run_config.dropatt,

        # mem_len=run_config.mem_len,
        # reuse_len=run_config.reuse_len,
        # bi_data=run_config.bi_data,
        clamp_len=run_config.clamp_len,
        # same_length=run_config.same_length,
        ctx_ids=seq2_ids,
        q_ids=seq1_ids,
        q_seq_len=first_seq_len,
        ctx_seq_len=second_seq_len,
        sep_layer=FLAGS.sep_layer,
        q_attn_mask=seq1_attn_mask,
        c_attn_mask=seq2_attn_mask,
        qc_attn_mask=seq_attn_mask,
    )

    with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
        upper_outputs = transformer_xl_decomposed(**tfm_args)
Example #8
0
def avg_checkpoints(model_dir, output_model_dir, last_k):
    tf.reset_default_graph()

    checkpoint_state = tf.train.get_checkpoint_state(model_dir)
    checkpoints = checkpoint_state.all_model_checkpoint_paths[-last_k:]
    var_list = tf.contrib.framework.list_variables(checkpoints[0])
    var_values, var_dtypes = {}, {}
    for (name, shape) in var_list:
        if not name.startswith("global_step"):
            var_values[name] = np.zeros(shape)
    for checkpoint in checkpoints:
        reader = tf.contrib.framework.load_checkpoint(checkpoint)
        for name in var_values:
            tensor = reader.get_tensor(name)
            var_dtypes[name] = tensor.dtype
            var_values[name] += tensor
        logger.info("Read from checkpoint %s", checkpoint)
    for name in var_values:  # Average.
        var_values[name] /= len(checkpoints)

    with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
        tf_vars = [
            tf.get_variable(v, shape=var_values[v].shape, dtype=var_dtypes[v])
            for v in var_values
        ]
    placeholders = [tf.placeholder(v.dtype, shape=v.shape) for v in tf_vars]
    assign_ops = [tf.assign(v, p) for (v, p) in zip(tf_vars, placeholders)]
    global_step = tf.Variable(0,
                              name="global_step",
                              trainable=False,
                              dtype=tf.int64)
    saver = tf.train.Saver(tf.all_variables())

    # Build a model consisting only of variables, set them to the average values.
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())
        for p, assign_op, (name, value) in zip(placeholders, assign_ops,
                                               six.iteritems(var_values)):
            sess.run(assign_op, {p: value})
        # Use the built saver to save the averaged checkpoint.
        saver.save(sess,
                   join(output_model_dir, "model.ckpt"),
                   global_step=global_step)
Example #9
0
def positionwise_ffn(inp,
                     d_model,
                     d_inner,
                     dropout,
                     kernel_initializer,
                     activation_type='relu',
                     scope='ff',
                     is_training=True,
                     reuse=None):
    """Position-wise Feed-forward Network."""
    if activation_type == 'relu':
        activation = tf.nn.relu
    elif activation_type == 'gelu':
        activation = gelu
    else:
        raise ValueError(
            'Unsupported activation type {}'.format(activation_type))

    output = inp
    with tf.variable_scope(scope, reuse=reuse):
        output = tf.layers.dense(output,
                                 d_inner,
                                 activation=activation,
                                 kernel_initializer=kernel_initializer,
                                 name='layer_1')
        output = tf.layers.dropout(output,
                                   dropout,
                                   training=is_training,
                                   name='drop_1')
        output = tf.layers.dense(output,
                                 d_model,
                                 kernel_initializer=kernel_initializer,
                                 name='layer_2')
        output = tf.layers.dropout(output,
                                   dropout,
                                   training=is_training,
                                   name='drop_2')
        output = tf.contrib.layers.layer_norm(output + inp,
                                              begin_norm_axis=-1,
                                              scope='LayerNorm')
    return output
Example #10
0
def get_race_loss(FLAGS, features, is_training):
    """Loss for downstream multi-choice QA tasks such as RACE."""

    bsz_per_core = tf.shape(features["input_ids"])[0]

    def _transform_features(feature):
        out = tf.reshape(feature, [bsz_per_core, 4, -1])
        out = tf.transpose(out, [2, 0, 1])
        out = tf.reshape(out, [-1, bsz_per_core * 4])
        return out

    inp = _transform_features(features["input_ids"])
    seg_id = _transform_features(features["segment_ids"])
    inp_mask = _transform_features(features["input_mask"])
    label = tf.reshape(features["label_ids"], [bsz_per_core])

    xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
    run_config = xlnet.create_run_config(is_training, True, FLAGS)

    xlnet_model = xlnet.XLNetModel(
        xlnet_config=xlnet_config,
        run_config=run_config,
        input_ids=inp,
        seg_ids=seg_id,
        input_mask=inp_mask)
    summary = xlnet_model.get_pooled_out(FLAGS.summary_type,
                                         FLAGS.use_summ_proj)

    with tf.variable_scope("logits"):
        logits = tf.layers.dense(summary, 1,
                                 kernel_initializer=xlnet_model.get_initializer())
        logits = tf.reshape(logits, [bsz_per_core, 4])

        one_hot_target = tf.one_hot(label, 4)
        per_example_loss = -tf.reduce_sum(
            tf.nn.log_softmax(logits) * one_hot_target, -1)
        total_loss = tf.reduce_mean(per_example_loss)

    return total_loss, per_example_loss, logits
Example #11
0
def embedding_lookup(x,
                     n_token,
                     d_embed,
                     initializer,
                     use_tpu=True,
                     scope='embedding',
                     reuse=None,
                     dtype=tf.float32):
    """TPU and GPU embedding_lookup function."""
    with tf.variable_scope(scope, reuse=reuse):
        lookup_table = tf.get_variable('lookup_table', [n_token, d_embed],
                                       dtype=dtype,
                                       initializer=initializer)
        if use_tpu:
            one_hot_idx = tf.one_hot(x, n_token, dtype=dtype)
            if one_hot_idx.shape.ndims == 2:
                return tf.einsum('in,nd->id', one_hot_idx,
                                 lookup_table), lookup_table
            else:
                return tf.einsum('ibn,nd->ibd', one_hot_idx,
                                 lookup_table), lookup_table
        else:
            return tf.nn.embedding_lookup(lookup_table, x), lookup_table
Example #12
0
    def model_fn(features, labels, mode, params):
        # ### Training or Evaluation
        is_training = (mode == tf.estimator.ModeKeys.TRAIN)

        # ### Get loss from inputs
        sep_layer = FLAGS.sep_layer
        if FLAGS.supervise:
            FLAGS.sep_layer = 0  # teacher sep at 0
            logger.info('supervise decompose layer: {}'.format(FLAGS.sep_layer))
            with tf.variable_scope("teacher", reuse=tf.AUTO_REUSE):
                teacher_outputs = get_decomposed_qa_outputs(
                    FLAGS, features, is_training)
        else:
            teacher_outputs = None

        if FLAGS.decompose:
            FLAGS.sep_layer = sep_layer
            logger.info('decompose at layer: {}'.format(FLAGS.sep_layer))
            outputs = get_decomposed_qa_outputs(FLAGS, features, is_training)
        else:
            logger.info('running in normal mode')
            outputs = get_qa_outputs(FLAGS, features, is_training)

        # ### Check model parameters
        num_params = sum([np.prod(v.shape) for v in tf.trainable_variables()])
        logger.info('#params: {}'.format(num_params))

        scaffold_fn = None

        # ### Evaluation mode
        if mode == tf.estimator.ModeKeys.PREDICT:
            if FLAGS.init_checkpoint:
                logger.info(
                    "init_checkpoint not being used in predict mode.")

            predictions = {
                "feature_id": features["feature_id"],
                "start_logits": outputs["start_logits"],
                "end_logits": outputs["end_logits"],
                "cls_logits": outputs["cls_logits"]
            }

            if FLAGS.use_tpu:
                output_spec = tf.contrib.tpu.TPUEstimatorSpec(
                    mode=mode, predictions=predictions, scaffold_fn=scaffold_fn)
            else:
                output_spec = tf.estimator.EstimatorSpec(
                    mode=mode, predictions=predictions)
            return output_spec

        # ## Compute loss
        seq_length = FLAGS.max_seq_length

        def compute_loss(log_probs, positions, depth=seq_length):
            one_hot_positions = tf.one_hot(
                positions, depth=depth, dtype=tf.float32)

            loss = - tf.reduce_sum(one_hot_positions * log_probs, axis=-1)
            loss = tf.reduce_mean(loss)
            return loss

        start_loss = compute_loss(
            outputs["start_log_probs"], features["answer_start"])
        end_loss = compute_loss(
            outputs["end_log_probs"], features["answer_end"])

        total_loss = (start_loss + end_loss) * 0.5

        cls_loss = compute_loss(
            outputs["cls_log_probs"], features["cls"], depth=FLAGS.num_classes)

        # note(zhiliny): by default multiply the loss by 0.5 so that
        # the scale is comparable to start_loss and end_loss
        total_loss += cls_loss * 0.5
        monitor_dict = {"loss/start": start_loss,
                        "loss/end": end_loss,
                        "loss/cls": cls_loss,
                        'loss/ce': total_loss}

        if teacher_outputs is not None:
            ce_loss = total_loss
            gamma = FLAGS.ll_gamma
            alpha = FLAGS.dl_alpha
            beta = FLAGS.ul_beta
            # supervise upper and logits
            temp = FLAGS.temperature
            kd_loss = get_distill_loss(teacher_outputs, outputs, temp)
            mse_loss = get_upper_loss(teacher_outputs, outputs)
            monitor_dict["loss/kd"] = kd_loss
            monitor_dict["loss/mse"] = mse_loss
            total_loss = gamma * ce_loss + alpha * kd_loss + beta * mse_loss
        # ### Configuring the optimizer
        all_trainable_variables = tf.trainable_variables()
        # set fine tune scope
        if FLAGS.tune_scopes:
            tune_scopes = FLAGS.tune_scopes.split(',')
        else:
            tune_scopes = None
        logger.info('tune_scopes: {}'.format(tune_scopes))
        if isinstance(tune_scopes, list):
            scoped_variables = []
            for scope in tune_scopes:
                scoped_variables.extend(tf.trainable_variables(scope))
            trainable_variables = scoped_variables
        else:
            trainable_variables = all_trainable_variables
        if FLAGS.init_scopes:
            init_scopes = FLAGS.init_scopes.split(',')
        else:
            init_scopes = None
        logger.info('init_scopes: {}'.format(init_scopes))
        if isinstance(init_scopes, list):
            to_be_init_variables = []
            for scope in init_scopes:
                to_be_init_variables.extend(tf.trainable_variables(scope))
        else:
            to_be_init_variables = all_trainable_variables

        initialized_variable_names = {}
        scaffold_fn = None
        # ### load pretrained models
        init_checkpoint = FLAGS.init_checkpoint
        if init_checkpoint:
            logger.info("Initialize from the ckpt {}".format(init_checkpoint))
            assign_map, initialized_variable_names = my_init_from_checkpoint(
                init_checkpoint, to_be_init_variables)
            # logger.info('assign_map: \n{}'.format(assign_map))
            # logger.info('initialized_variable_names: \n{}'.format(
            # initialized_variable_names))

            if FLAGS.use_tpu:
                def tpu_scaffold():
                    tf.train.init_from_checkpoint(init_checkpoint, assign_map)
                    return tf.train.Scaffold()

                scaffold_fn = tpu_scaffold
            else:
                tf.train.init_from_checkpoint(init_checkpoint, assign_map)

        logger.info("**** Initialized Variables ****")
        for var in to_be_init_variables:
            init_str = ""
            if var.name in initialized_variable_names:
                init_str = ", *INIT*"
            logger.info("  name=%s, shape=%s%s",
                        var.name, var.shape, init_str)

        if mode == tf.estimator.ModeKeys.TRAIN:
            logger.info("**** Trainable Variables ****")
            for var in trainable_variables:
                init_str = ""
                if var.name in initialized_variable_names:
                    init_str = ", *INIT_AND_TRAINABLE*"
                logger.info("*TRAINABLE*  name=%s, shape=%s%s",
                            var.name, var.shape, init_str)
        train_op, learning_rate, _ = get_train_op(
            FLAGS, total_loss, trainable_variables=trainable_variables)

        monitor_dict["lr"] = learning_rate

        # ### Constucting training TPUEstimatorSpec with new cache.
        if FLAGS.use_tpu:
            host_call = construct_scalar_host_call(
                monitor_dict=monitor_dict,
                model_dir=FLAGS.model_dir,
                prefix="train/",
                reduce_fn=tf.reduce_mean)

            train_spec = tf.contrib.tpu.TPUEstimatorSpec(
                mode=mode, loss=total_loss, train_op=train_op,
                host_call=host_call,
                scaffold_fn=scaffold_fn)
        else:
            train_spec = tf.estimator.EstimatorSpec(
                mode=mode, loss=total_loss, train_op=train_op)

        return train_spec
Example #13
0
def summarize_sequence(summary_type,
                       hidden,
                       d_model,
                       n_head,
                       d_head,
                       dropout,
                       dropatt,
                       input_mask,
                       is_training,
                       initializer,
                       scope=None,
                       reuse=None,
                       use_proj=True):
    """
        Different classification tasks may not may not share the same parameters
        to summarize the sequence features.

        If shared, one can keep the `scope` to the default value `None`.
        Otherwise, one should specify a different `scope` for each task.
    """

    with tf.variable_scope(scope, 'sequnece_summary', reuse=reuse):
        if summary_type == 'last':
            summary = hidden[-1]
        elif summary_type == 'first':
            summary = hidden[0]
        elif summary_type == 'mean':
            summary = tf.reduce_mean(hidden, axis=0)
        elif summary_type == 'attn':
            bsz = tf.shape(hidden)[1]

            summary_bias = tf.get_variable('summary_bias', [d_model],
                                           dtype=hidden.dtype,
                                           initializer=initializer)
            summary_bias = tf.tile(summary_bias[None, None], [1, bsz, 1])

            if input_mask is not None:
                input_mask = input_mask[None, :, :, None]

            summary = multihead_attn(summary_bias,
                                     hidden,
                                     hidden,
                                     input_mask,
                                     d_model,
                                     n_head,
                                     d_head,
                                     dropout,
                                     dropatt,
                                     is_training,
                                     initializer,
                                     residual=False)
            summary = summary[0]
        else:
            raise ValueError(
                'Unsupported summary type {}'.format(summary_type))

        # use another projection as in BERT
        if use_proj:
            summary = tf.layers.dense(summary,
                                      d_model,
                                      activation=tf.tanh,
                                      kernel_initializer=initializer,
                                      name='summary')

        # dropout
        summary = tf.layers.dropout(summary,
                                    dropout,
                                    training=is_training,
                                    name='dropout')

    return summary
Example #14
0
def transformer_xl(
        input_ids,
        n_token,
        n_layer,
        d_model,
        n_head,
        d_head,
        d_inner,
        dropout,
        dropatt,
        attn_type,
        is_training,
        initializer,
        # bi_data,   mem_len=None,
        # inp_q=None, mems=None, same_length=False,
        clamp_len=-1,
        untie_r=False,
        use_tpu=True,
        input_mask=None,
        seg_id=None,
        # perm_mask=None,  reuse_len=None, target_mapping=None,
        ff_activation='relu',
        use_bfloat16=False,
        scope='transformer',
        **kwargs):
    """
      Defines a Transformer-XL computation graph with additional
      support for XLNet.

      Args:

      input_ids: int32 Tensor in shape [len, bsz], the input token IDs.
      seg_id: int32 Tensor in shape [len, bsz], the input segment IDs.
      input_mask: float32 Tensor in shape [len, bsz], the input mask.
        0 for real tokens and 1 for padding.
      mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
        from previous batches. The length of the list equals n_layer.
        If None, no memory is used.
      perm_mask: float32 Tensor in shape [len, len, bsz].
        If perm_mask[i, j, k] = 0, i attend to j in batch k;
        if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
        If None, each position attends to all the others.
      target_mapping: float32 Tensor in shape [num_predict, len, bsz].
        If target_mapping[i, j, k] = 1, the i-th predict in batch k is
        on the j-th token.
        Only used during pretraining for partial prediction.
        Set to None during finetuning.
      inp_q: float32 Tensor in shape [len, bsz].
        1 for tokens with losses and 0 for tokens without losses.
        Only used during pretraining for two-stream attention.
        Set to None during finetuning.

      n_layer: int, the number of layers.
      d_model: int, the hidden size.
      n_head: int, the number of attention heads.
      d_head: int, the dimension size of each attention head.
      d_inner: int, the hidden size in feed-forward layers.
      ff_activation: str, "relu" or "gelu".
      untie_r: bool, whether to untie the biases in attention.
      n_token: int, the vocab size.

      is_training: bool, whether in training mode.
      use_tpu: bool, whether TPUs are used.
      use_bfloat16: bool, use bfloat16 instead of float32.
      dropout: float, dropout rate.
      dropatt: float, dropout rate on attention probabilities.
      init: str, the initialization scheme, either "normal" or "uniform".
      init_range: float, initialize the parameters with a uniform distribution
        in [-init_range, init_range]. Only effective when init="uniform".
      init_std: float, initialize the parameters with a normal distribution
        with mean 0 and stddev init_std. Only effective when init="normal".
      mem_len: int, the number of tokens to cache.
      reuse_len: int, the number of tokens in the currect batch to be cached
        and reused in the future.
      bi_data: bool, whether to use bidirectional input pipeline.
        Usually set to True during pretraining and False during finetuning.
      clamp_len: int, clamp all relative distances larger than clamp_len.
        -1 means no clamping.
      same_length: bool, whether to use the same attention length for each token.
      summary_type: str, "last", "first", "mean", or "attn". The method
        to pool the input to get a vector representation.
      initializer: A tf initializer.
      scope: scope name for the computation graph.
    """
    # logger.info('memory input {}'.format(mems))
    tf_float = tf.bfloat16 if use_bfloat16 else tf.float32
    logger.info('Use float type {}'.format(tf_float))

    new_mems = []
    with tf.variable_scope(scope):
        if untie_r:
            r_w_bias = tf.get_variable('r_w_bias', [n_layer, n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)
            r_r_bias = tf.get_variable('r_r_bias', [n_layer, n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)
        else:
            r_w_bias = tf.get_variable('r_w_bias', [n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)
            r_r_bias = tf.get_variable('r_r_bias', [n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)

        batch_size = tf.shape(input_ids)[1]
        seq_len = tf.shape(input_ids)[0]
        # mlen = tf.shape(mems[0])[0] if mems is not None else 0
        mlen = 0
        klen = mlen + seq_len

        # #### Attention mask
        attn_mask = None
        # causal attention mask
        # if attn_type == 'uni':
        #     attn_mask = _create_mask(seq_len, mlen, tf_float, same_length)
        #     attn_mask = attn_mask[:, :, None, None]
        # elif attn_type == 'bi':
        #     attn_mask = None
        # else:
        #   raise ValueError('Unsupported attention type: {}'.format(attn_type))

        # data mask: input mask & perm mask
        data_mask = input_mask[None]
        # if input_mask is not None and perm_mask is not None:
        #     data_mask = input_mask[None] + perm_mask
        # elif input_mask is not None and perm_mask is None:
        #     data_mask = input_mask[None]
        # elif input_mask is None and perm_mask is not None:
        #     data_mask = perm_mask
        # else:
        #     data_mask = None

        if data_mask is not None:
            # all mems can be attended to
            mems_mask = tf.zeros([tf.shape(data_mask)[0], mlen, batch_size],
                                 dtype=tf_float)
            data_mask = tf.concat([mems_mask, data_mask], 1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
            attn_mask = tf.cast(attn_mask > 0, dtype=tf_float)

        if attn_mask is not None:
            non_tgt_mask = -tf.eye(seq_len, dtype=tf_float)
            non_tgt_mask = tf.concat(
                [tf.zeros([seq_len, mlen], dtype=tf_float), non_tgt_mask],
                axis=-1)
            non_tgt_mask = tf.cast(
                (attn_mask + non_tgt_mask[:, :, None, None]) > 0,
                dtype=tf_float)
        else:
            non_tgt_mask = None

        # #### Word embedding
        word_emb_k, lookup_table = embedding_lookup(x=input_ids,
                                                    n_token=n_token,
                                                    d_embed=d_model,
                                                    initializer=initializer,
                                                    use_tpu=use_tpu,
                                                    dtype=tf_float,
                                                    scope='word_embedding')

        # if inp_q is not None:
        #     with tf.variable_scope('mask_emb'):
        #         mask_emb = tf.get_variable('mask_emb', [1, 1, d_model],
        #                                    dtype=tf_float)
        #         if target_mapping is not None:
        #           word_emb_q = tf.tile(mask_emb, [tf.shape(target_mapping)[0],
        #                                             batch_size, 1])
        #         else:
        #             inp_q_ext = inp_q[:, :, None]
        #             word_emb_q = inp_q_ext * mask_emb + (
        #                     1 - inp_q_ext) * word_emb_k
        output_h = tf.layers.dropout(word_emb_k, dropout, training=is_training)
        # if inp_q is not None:
        #     output_g = tf.layers.dropout(word_emb_q, dropout,
        #                                  training=is_training)

        # #### Segment embedding
        if seg_id is not None:
            if untie_r:
                r_s_bias = tf.get_variable('r_s_bias',
                                           [n_layer, n_head, d_head],
                                           dtype=tf_float,
                                           initializer=initializer)
            else:
                # default case (tie)
                r_s_bias = tf.get_variable('r_s_bias', [n_head, d_head],
                                           dtype=tf_float,
                                           initializer=initializer)

            seg_embed = tf.get_variable('seg_embed',
                                        [n_layer, 2, n_head, d_head],
                                        dtype=tf_float,
                                        initializer=initializer)

            # Convert `seg_id` to one-hot `seg_mat`
            mem_pad = tf.zeros([mlen, batch_size], dtype=tf.int32)
            cat_ids = tf.concat([mem_pad, seg_id], 0)

            # `1` indicates not in the same segment [qlen x klen x bsz]
            seg_mat = tf.cast(
                tf.logical_not(tf.equal(seg_id[:, None], cat_ids[None, :])),
                tf.int32)
            seg_mat = tf.one_hot(seg_mat, 2, dtype=tf_float)
        else:
            seg_mat = None

        # #### Positional encoding
        pos_emb = relative_positional_encoding(seq_len,
                                               klen,
                                               d_model,
                                               clamp_len,
                                               attn_type,
                                               bsz=batch_size,
                                               dtype=tf_float)
        pos_emb = tf.layers.dropout(pos_emb, dropout, training=is_training)

        # #### Attention layers
        # if mems is None:
        #     mems = [None] * n_layer
        mems = [None] * n_layer
        for i in range(n_layer):
            # cache new mems
            # new_mems.append(_cache_mem(output_h, mems[i], mem_len, reuse_len))
            new_mems.append(None)

            # segment bias
            if seg_id is None:
                r_s_bias_i = None
                seg_embed_i = None
            else:
                r_s_bias_i = r_s_bias if not untie_r else r_s_bias[i]
                seg_embed_i = seg_embed[i]

            with tf.variable_scope('layer_{}'.format(i)):
                # if inp_q is not None:
                #     output_h, output_g = two_stream_rel_attn(
                #         h=output_h,
                #         g=output_g,
                #         r=pos_emb,
                #         r_w_bias=r_w_bias if not untie_r else r_w_bias[i],
                #         r_r_bias=r_r_bias if not untie_r else r_r_bias[i],
                #         seg_mat=seg_mat,
                #         r_s_bias=r_s_bias_i,
                #         seg_embed=seg_embed_i,
                #         attn_mask_h=non_tgt_mask,
                #         attn_mask_g=attn_mask,
                #         mems=mems[i],
                #         target_mapping=target_mapping,
                #         d_model=d_model,
                #         n_head=n_head,
                #         d_head=d_head,
                #         dropout=dropout,
                #         dropatt=dropatt,
                #         is_training=is_training,
                #         kernel_initializer=initializer)
                #     reuse = True
                # else:
                reuse = False

                output_h = rel_multihead_attn(
                    h=output_h,
                    r=pos_emb,
                    r_w_bias=r_w_bias if not untie_r else r_w_bias[i],
                    r_r_bias=r_r_bias if not untie_r else r_r_bias[i],
                    seg_mat=seg_mat,
                    r_s_bias=r_s_bias_i,
                    seg_embed=seg_embed_i,
                    attn_mask=non_tgt_mask,
                    mems=mems[i],
                    d_model=d_model,
                    n_head=n_head,
                    d_head=d_head,
                    dropout=dropout,
                    dropatt=dropatt,
                    is_training=is_training,
                    kernel_initializer=initializer,
                    reuse=reuse)

                # if inp_q is not None:
                #     output_g = positionwise_ffn(
                #         inp=output_g,
                #         d_model=d_model,
                #         d_inner=d_inner,
                #         dropout=dropout,
                #         kernel_initializer=initializer,
                #         activation_type=ff_activation,
                #         is_training=is_training)

                output_h = positionwise_ffn(inp=output_h,
                                            d_model=d_model,
                                            d_inner=d_inner,
                                            dropout=dropout,
                                            kernel_initializer=initializer,
                                            activation_type=ff_activation,
                                            is_training=is_training,
                                            reuse=reuse)

        # if inp_q is not None:
        #    output = tf.layers.dropout(output_g, dropout, training=is_training)
        # else:
        #    output = tf.layers.dropout(output_h, dropout, training=is_training)
        output = tf.layers.dropout(output_h, dropout, training=is_training)
        return output, new_mems, lookup_table
Example #15
0
def transformer_xl_decomposed(n_token,
                              n_layer,
                              d_model,
                              n_head,
                              d_head,
                              d_inner,
                              dropout,
                              dropatt,
                              attn_type,
                              is_training,
                              initializer,
                              q_ids,
                              ctx_ids,
                              clamp_len=-1,
                              untie_r=False,
                              use_tpu=True,
                              ff_activation='relu',
                              use_bfloat16=False,
                              sep_layer=9,
                              q_attn_mask=None,
                              c_attn_mask=None,
                              qc_attn_mask=None,
                              q_seq_len=None,
                              ctx_seq_len=None,
                              scope='transformer',
                              **kwargs):
    tf_float = tf.bfloat16 if use_bfloat16 else tf.float32
    logger.info('Use float type {}'.format(tf_float))
    # new_mems = []
    with tf.variable_scope(scope):
        if untie_r:
            r_w_bias = tf.get_variable('r_w_bias', [n_layer, n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)
            r_r_bias = tf.get_variable('r_r_bias', [n_layer, n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)
        else:
            r_w_bias = tf.get_variable('r_w_bias', [n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)
            r_r_bias = tf.get_variable('r_r_bias', [n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)

        # batch_size = tf.shape(input_ids)[1]
        # seq_len = tf.shape(input_ids)[0]
        batch_size = tf.shape(q_ids)[1]

        # mlen = tf.shape(mems[0])[0] if mems is not None else 0
        # mlen = 0
        # klen = mlen + seq_len

        # #### Attention mask
        attn_mask = None

        # data_mask = input_mask[None]
        # if data_mask is not None:
        # all mems can be attended to
        # mems_mask = tf.zeros([tf.shape(data_mask)[0], mlen, batch_size],
        #                      dtype=tf_float)
        # data_mask = tf.concat([mems_mask, data_mask], 1)
        # if attn_mask is None:
        #     attn_mask = data_mask[:, :, :, None]
        # else:
        #     attn_mask += data_mask[:, :, :, None]
        # non_tgt_mask = None

        # #### Word embedding
        q_emb, lookup_table = embedding_lookup(x=q_ids,
                                               n_token=n_token,
                                               d_embed=d_model,
                                               initializer=initializer,
                                               use_tpu=use_tpu,
                                               dtype=tf_float,
                                               scope='word_embedding')

        c_emb, _ = embedding_lookup(x=ctx_ids,
                                    n_token=n_token,
                                    d_embed=d_model,
                                    initializer=initializer,
                                    use_tpu=use_tpu,
                                    dtype=tf_float,
                                    reuse=True,
                                    scope='word_embedding')

        q_output_h = tf.layers.dropout(q_emb, dropout, training=is_training)
        ctx_output_h = tf.layers.dropout(c_emb, dropout, training=is_training)

        # #### Segment embedding
        if untie_r:
            r_s_bias = tf.get_variable('r_s_bias', [n_layer, n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)
        else:
            # default case (tie)
            r_s_bias = tf.get_variable('r_s_bias', [n_head, d_head],
                                       dtype=tf_float,
                                       initializer=initializer)

        seg_embed = tf.get_variable('seg_embed', [n_layer, 2, n_head, d_head],
                                    dtype=tf_float,
                                    initializer=initializer)

        # Convert `seg_id` to one-hot `seg_mat`
        # mem_pad = tf.zeros([mlen, batch_size], dtype=tf.int32)
        # cat_ids = tf.concat([mem_pad, seg_id], 0)

        # `1` indicates not in the same segment [qlen x klen x bsz]
        ctx_seg_ids = tf.zeros_like(ctx_ids, dtype=tf.int32)
        ctx_seg_mat = tf.cast(
            tf.logical_not(tf.equal(ctx_seg_ids[:, None],
                                    ctx_seg_ids[None, :])), tf.int32)
        ctx_seg_mat = tf.one_hot(ctx_seg_mat, 2, dtype=tf_float)
        q_seg_ids = tf.ones_like(q_ids, dtype=tf.int32)
        q_seg_mat = tf.cast(
            tf.logical_not(tf.equal(q_seg_ids[:, None], q_seg_ids[None, :])),
            tf.int32)
        q_seg_mat = tf.one_hot(q_seg_mat, 2, dtype=tf_float)

        seg_ids = tf.concat([ctx_seg_ids, q_seg_ids], axis=0)
        seg_mat = tf.cast(
            tf.logical_not(tf.equal(seg_ids[:, None], seg_ids[None, :])),
            tf.int32)
        seg_mat = tf.one_hot(seg_mat, 2, dtype=tf_float)

        # #### Positional encoding FIXME: better use of relative pos emb
        q_pos_emb = relative_positional_encoding(q_seq_len,
                                                 q_seq_len,
                                                 d_model,
                                                 clamp_len,
                                                 attn_type,
                                                 bsz=batch_size,
                                                 dtype=tf_float)
        q_pos_emb = tf.layers.dropout(q_pos_emb, dropout, training=is_training)

        ctx_pos_emb = relative_positional_encoding(ctx_seq_len,
                                                   ctx_seq_len,
                                                   d_model,
                                                   clamp_len,
                                                   attn_type,
                                                   bsz=batch_size,
                                                   dtype=tf_float)
        ctx_pos_emb = tf.layers.dropout(ctx_pos_emb,
                                        dropout,
                                        training=is_training)
        # pos_emb = tf.concat([ctx_pos_emb, q_pos_emb], axis=0)
        seq_len = ctx_seq_len + q_seq_len
        pos_emb = relative_positional_encoding(seq_len,
                                               seq_len,
                                               d_model,
                                               clamp_len,
                                               attn_type,
                                               bsz=batch_size,
                                               dtype=tf_float)
        pos_emb = tf.layers.dropout(pos_emb, dropout, training=is_training)
        # ctx_pos_emb = pos_emb[q_seq_len:q_seq_len + 2 * ctx_seq_len, :, :]
        # q_pos_emb1 = pos_emb[:q_seq_len, :, :]
        # q_pos_emb2 = pos_emb[q_seq_len + 2 * ctx_seq_len:, :, :]
        # q_pos_emb = tf.concat([q_pos_emb1, q_pos_emb2], axis=0)
        # #### Attention layers
        # mems = [None] * n_layer
        for i in range(sep_layer):
            r_s_bias_i = r_s_bias if not untie_r else r_s_bias[i]
            r_w_bias_i = r_w_bias if not untie_r else r_w_bias[i]
            r_r_bias_i = r_r_bias if not untie_r else r_r_bias[i]
            seg_embed_i = seg_embed[i]
            with tf.variable_scope('layer_{}'.format(i)):
                ctx_output_h = rel_multihead_attn(
                    h=ctx_output_h,
                    r=ctx_pos_emb,
                    r_w_bias=r_w_bias_i,
                    r_r_bias=r_r_bias_i,
                    r_s_bias=r_s_bias_i,
                    seg_mat=ctx_seg_mat,
                    seg_embed=seg_embed_i,
                    attn_mask=c_attn_mask,
                    mems=None,
                    d_model=d_model,
                    n_head=n_head,
                    d_head=d_head,
                    dropout=dropout,
                    dropatt=dropatt,
                    is_training=is_training,
                    kernel_initializer=initializer,
                    reuse=False)

                ctx_output_h = positionwise_ffn(inp=ctx_output_h,
                                                d_model=d_model,
                                                d_inner=d_inner,
                                                dropout=dropout,
                                                kernel_initializer=initializer,
                                                activation_type=ff_activation,
                                                is_training=is_training,
                                                reuse=False)

                q_output_h = rel_multihead_attn(h=q_output_h,
                                                r=q_pos_emb,
                                                r_w_bias=r_w_bias_i,
                                                r_r_bias=r_r_bias_i,
                                                r_s_bias=r_s_bias_i,
                                                seg_mat=q_seg_mat,
                                                seg_embed=seg_embed_i,
                                                attn_mask=q_attn_mask,
                                                mems=None,
                                                d_model=d_model,
                                                n_head=n_head,
                                                d_head=d_head,
                                                dropout=dropout,
                                                dropatt=dropatt,
                                                is_training=is_training,
                                                kernel_initializer=initializer,
                                                reuse=tf.AUTO_REUSE)

                q_output_h = positionwise_ffn(inp=q_output_h,
                                              d_model=d_model,
                                              d_inner=d_inner,
                                              dropout=dropout,
                                              kernel_initializer=initializer,
                                              activation_type=ff_activation,
                                              is_training=is_training,
                                              reuse=tf.AUTO_REUSE)

        # concat all q, ctx related variables
        output_h = tf.concat([ctx_output_h, q_output_h], axis=0)
        upper_outputs = []
        for i in range(sep_layer, n_layer):
            r_s_bias_i = r_s_bias if not untie_r else r_s_bias[i]
            r_w_bias_i = r_w_bias if not untie_r else r_w_bias[i]
            r_r_bias_i = r_r_bias if not untie_r else r_r_bias[i]
            seg_embed_i = seg_embed[i]
            with tf.variable_scope('layer_{}'.format(i)):
                output_h = rel_multihead_attn(h=output_h,
                                              r=pos_emb,
                                              seg_mat=seg_mat,
                                              r_w_bias=r_w_bias_i,
                                              r_r_bias=r_r_bias_i,
                                              r_s_bias=r_s_bias_i,
                                              seg_embed=seg_embed_i,
                                              attn_mask=qc_attn_mask,
                                              mems=None,
                                              d_model=d_model,
                                              n_head=n_head,
                                              d_head=d_head,
                                              dropout=dropout,
                                              dropatt=dropatt,
                                              is_training=is_training,
                                              kernel_initializer=initializer,
                                              reuse=False)

                output_h = positionwise_ffn(inp=output_h,
                                            d_model=d_model,
                                            d_inner=d_inner,
                                            dropout=dropout,
                                            kernel_initializer=initializer,
                                            activation_type=ff_activation,
                                            is_training=is_training,
                                            reuse=False)
                upper_outputs.append(output_h)
        output = tf.layers.dropout(output_h, dropout, training=is_training)
        upper_outputs[-1] = output
        return upper_outputs
Example #16
0
def get_decomposed_qa_outputs(FLAGS, features, is_training):
    question_ids = features["question_ids"]
    context_ids = features["context_ids"]
    seq_len = FLAGS.max_seq_length
    q_seq_len = FLAGS.max_first_length + 2
    ctx_seq_len = seq_len - q_seq_len
    q_mask_int = tf.cast(tf.cast(question_ids, tf.bool), tf.int32)
    cls_index = tf.reshape(
        tf.reduce_sum(q_mask_int, axis=1) + ctx_seq_len, [-1])
    # 0 for mask out
    # q_zeros = tf.zeros_like(question_ids)
    # p_ids = tf.concat([context_ids, q_zeros], axis=1)
    # p_mask = tf.cast(tf.cast(p_ids, tf.bool), tf.float32)
    question_ids = tf.transpose(question_ids, [1, 0])
    context_ids = tf.transpose(context_ids, [1, 0])

    q_attn_mask = get_attention_mask(question_ids, q_seq_len)
    c_attn_mask = get_attention_mask(context_ids, ctx_seq_len)
    qc_attn_mask = get_attention_mask(
        tf.concat([context_ids, question_ids], axis=0), seq_len)

    xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
    run_config = xlnet.create_run_config(is_training, True, FLAGS)
    initializer = xlnet._get_initializer(run_config)
    tfm_args = dict(
        n_token=xlnet_config.n_token,
        initializer=initializer,
        attn_type="bi",
        n_layer=xlnet_config.n_layer,
        d_model=xlnet_config.d_model,
        n_head=xlnet_config.n_head,
        d_head=xlnet_config.d_head,
        d_inner=xlnet_config.d_inner,
        ff_activation=xlnet_config.ff_activation,
        untie_r=xlnet_config.untie_r,
        is_training=run_config.is_training,
        use_bfloat16=run_config.use_bfloat16,
        use_tpu=run_config.use_tpu,
        dropout=run_config.dropout,
        dropatt=run_config.dropatt,

        # mem_len=run_config.mem_len,
        # reuse_len=run_config.reuse_len,
        # bi_data=run_config.bi_data,
        clamp_len=run_config.clamp_len,
        # same_length=run_config.same_length,
        ctx_ids=context_ids,
        q_ids=question_ids,
        q_seq_len=q_seq_len,
        ctx_seq_len=ctx_seq_len,
        sep_layer=FLAGS.sep_layer,
        q_attn_mask=q_attn_mask,
        c_attn_mask=c_attn_mask,
        qc_attn_mask=qc_attn_mask,
    )

    with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
        upper_outputs = transformer_xl_decomposed(**tfm_args)

    output = upper_outputs[-1]
    return_dict = {'upper_outputs': upper_outputs}
    with tf.variable_scope("logits"):
        # logits: seq, batch_size, 2
        logits = tf.layers.dense(output, 2, kernel_initializer=initializer)

        # logits: 2, batch_size, seq
        logits = tf.transpose(logits, [2, 1, 0])

        # start_logits: batch_size, seq
        # end_logits: batch_size, seq
        start_logits, end_logits = tf.unstack(logits, axis=0)

        # start_logits_masked = start_logits * p_mask - 1e30 * (1 - p_mask)
        # start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)
        start_log_probs = tf.nn.log_softmax(start_logits, -1)

        # end_logits_masked = end_logits * p_mask - 1e30 * (1 - p_mask)
        # end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)
        end_log_probs = tf.nn.log_softmax(end_logits, -1)

    return_dict["start_logits"] = start_logits
    return_dict["end_logits"] = end_logits
    if is_training:
        return_dict["start_log_probs"] = start_log_probs
        return_dict["end_log_probs"] = end_log_probs

    # an additional layer to predict answer class, 0: span, 1:yes, 2:no
    with tf.variable_scope("answer_class"):
        # get the representation of CLS
        cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
        cls_feature = tf.einsum("lbh,bl->bh", output, cls_index)
        ans_feature = tf.layers.dense(cls_feature,
                                      xlnet_config.d_model,
                                      activation=tf.tanh,
                                      kernel_initializer=initializer,
                                      name='pooler')

        ans_feature = tf.layers.dropout(ans_feature,
                                        FLAGS.dropout,
                                        training=is_training)
        # hotpot has 3 classes,
        # squad 2.0 has 2 classes
        cls_logits = tf.layers.dense(ans_feature,
                                     FLAGS.num_classes,
                                     kernel_initializer=initializer,
                                     name="cls")
        cls_log_probs = tf.nn.log_softmax(cls_logits, -1)

    return_dict["cls_logits"] = cls_logits
    if is_training:
        return_dict["cls_log_probs"] = cls_log_probs

    return return_dict
Example #17
0
def get_qa_outputs(FLAGS, features, is_training):
    """Loss for downstream span-extraction QA tasks such as SQuAD."""

    input_ids = features["input_ids"]
    seg_id = features["segment_ids"]
    input_mask_int = tf.cast(tf.cast(input_ids, tf.bool), tf.int32)
    cls_index = tf.reshape(tf.reduce_sum(input_mask_int, axis=1), [-1])
    p_mask = tf.cast(tf.cast(seg_id, tf.bool), tf.float32)
    input_ids = tf.transpose(input_ids, [1, 0])
    input_mask = 1 - tf.cast(input_mask_int, tf.float32)
    input_mask = tf.transpose(input_mask, [1, 0])
    seg_id = tf.transpose(seg_id, [1, 0])
    seq_len = tf.shape(input_ids)[0]

    xlnet_config = xlnet.XLNetConfig(json_path=FLAGS.model_config_path)
    run_config = xlnet.create_run_config(is_training, True, FLAGS)

    xlnet_model = xlnet.XLNetModel(
        xlnet_config=xlnet_config,
        run_config=run_config,
        input_ids=input_ids,
        seg_ids=seg_id,
        input_mask=input_mask)
    output = xlnet_model.get_sequence_output()
    initializer = xlnet_model.get_initializer()

    return_dict = {}
    with tf.variable_scope("logits"):
        # logits: seq, batch_size, 2
        logits = tf.layers.dense(output, 2, kernel_initializer=initializer)

        # logits: 2, batch_size, seq
        logits = tf.transpose(logits, [2, 1, 0])

        # start_logits: batch_size, seq
        # end_logits: batch_size, seq
        start_logits, end_logits = tf.unstack(logits, axis=0)

        start_logits_masked = start_logits * (1 - p_mask) - 1e30 * p_mask
        start_log_probs = tf.nn.log_softmax(start_logits_masked, -1)

        end_logits_masked = end_logits * (1 - p_mask) - 1e30 * p_mask
        end_log_probs = tf.nn.log_softmax(end_logits_masked, -1)

    if is_training:
        return_dict["start_log_probs"] = start_log_probs
        return_dict["end_log_probs"] = end_log_probs
    else:
        return_dict["start_logits"] = start_logits
        return_dict["end_logits"] = end_logits

    # an additional layer to predict answer class, 0: span, 1:yes, 2:no
    with tf.variable_scope("answer_class"):
        # get the representation of CLS
        cls_index = tf.one_hot(cls_index, seq_len, axis=-1, dtype=tf.float32)
        cls_feature = tf.einsum("lbh,bl->bh", output, cls_index)
        ans_feature = tf.layers.dense(cls_feature, xlnet_config.d_model,
                                      activation=tf.tanh,
                                      kernel_initializer=initializer,
                                      name='pooler')

        ans_feature = tf.layers.dropout(ans_feature, FLAGS.dropout,
                                        training=is_training)
        # hotpot has 3 classes,
        # squad 2.0 has 2 classes
        cls_logits = tf.layers.dense(ans_feature, FLAGS.num_classes,
                                     kernel_initializer=initializer,
                                     name="cls")
        cls_log_probs = tf.nn.log_softmax(cls_logits, -1)
    if is_training:
        return_dict["cls_log_probs"] = cls_log_probs
    return_dict["cls_logits"] = cls_logits

    return return_dict
Example #18
0
    def __init__(self, xlnet_config, run_config, input_ids, seg_ids, input_mask,
                 # mems=None, perm_mask=None, target_mapping=None, inp_q=None,
                 **kwargs):
        """
        Args:
          xlnet_config: XLNetConfig,
          run_config: RunConfig,
          input_ids: int32 Tensor in shape [len, bsz], the input token IDs.
          seg_ids: int32 Tensor in shape [len, bsz], the input segment IDs.
          input_mask: float32 Tensor in shape [len, bsz], the input mask.
            0 for real tokens and 1 for padding.
          mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
          perm_mask: float32 Tensor in shape [len, len, bsz].
            If perm_mask[i, j, k] = 0, i attend to j in batch k;
            if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
          target_mapping: float32 Tensor in shape [num_predict, len, bsz].
            If target_mapping[i, j, k] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
          inp_q: float32 Tensor in shape [len, bsz].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        """

        initializer = _get_initializer(run_config)

        tfm_args = dict(
            n_token=xlnet_config.n_token,
            initializer=initializer,
            attn_type="bi",
            n_layer=xlnet_config.n_layer,
            d_model=xlnet_config.d_model,
            n_head=xlnet_config.n_head,
            d_head=xlnet_config.d_head,
            d_inner=xlnet_config.d_inner,
            ff_activation=xlnet_config.ff_activation,
            untie_r=xlnet_config.untie_r,

            is_training=run_config.is_training,
            use_bfloat16=run_config.use_bfloat16,
            use_tpu=run_config.use_tpu,
            dropout=run_config.dropout,
            dropatt=run_config.dropatt,

            # mem_len=run_config.mem_len,
            # reuse_len=run_config.reuse_len,
            # bi_data=run_config.bi_data,
            clamp_len=run_config.clamp_len,
            # same_length=run_config.same_length
        )

        input_args = dict(
            input_ids=input_ids,
            seg_id=seg_ids,
            input_mask=input_mask,
            # mems=mems,
            # perm_mask=perm_mask,
            # target_mapping=target_mapping,
            # inp_q=inp_q,
        )
        tfm_args.update(input_args)

        with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
            (self.output, self.new_mems, self.lookup_table
             ) = modeling.transformer_xl(**tfm_args)

        self.input_mask = input_mask
        self.initializer = initializer
        self.xlnet_config = xlnet_config
        self.run_config = run_config