def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) img1 = base64_to_pil(request.json) #cam(img1) preds = model_predict(img, model) # Process your result for human pred_class = decode_predictions(preds) # ImageNet Decode result = str(pred_class[0][0][1]) # Convert to string result = result.replace('_', ' ').capitalize() return jsonify(result=result) #, probability=pred_proba) return None
def predict(): if request.method == 'POST': # Get the image from post request print(request.json) print('aaa') img1, img2 = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction preds = model_predict(img1, img2, model) # Process your result for human # pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability # result = str(pred_class[0][0][1]) # Convert to string # result = result.replace('_', ' ').capitalize() # Serialize the result, you can add additional fields type(preds) result = preds # lists = result.tolist() # json_str = json.dumps(lists) # print(json_str) print(result) return jsonify(result) return None
def predict(): if request.method == 'POST': # Get the image from post request model_xception = load_model(MODEL_XCEPTION) img = base64_to_pil(request.json) preds = model_predict(img, model_xception) # Save the image to ./uploads # img.save("./uploads/image.png") # Make predictionpy #preds = model_predict(img, model # Process your result for human pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability classes = [ 'Abyssinian', 'Bengal', 'Bombay', 'British Shorthair', 'Egyptian Mau', 'Maine Coon', 'Persian', 'Russian Blue', 'Siamese', 'Sphynx' ] #result = str(classes[0][0][1]) # Convert to string #result = str(classes[np.argmax(np.array(preds[0]))]) #result = result.replace('_', ' ').capitalize() result = [] for idx in preds.argsort()[0][::-1][:3]: arr = classes[idx].split("-")[-1] + ' : ' + "{:.2f}%\n".format( preds[0][idx] * 100) #arr = [ '\n{}'.format(x) for x in arr ] result.append(arr) a = "Used Model: Xception" # Serialize the result, you can add additional fields return jsonify(result=result, prediction=pred_proba, a=a) return render_template("index.html", a=a)
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction preds = model_predict(img, model) print("b/m", preds) # Process your result for human pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability #pred_class = decode_predictions(preds, top=1) # ImageNet Decode print("pred_proba", pred_proba) print(type(preds[0])) if float(preds[0][1]) >= 0.5: result = "malignant" else: result = "benign" # Serialize the result, you can add additional fields return jsonify(result=result, probability=pred_proba) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction preds = model_predict(img, model) # Process your result for human if preds == 0: result = 'No DR' elif preds == 1: result = 'Mild' elif preds == 2: result = 'Moderate' elif preds == 3: result = 'Severe' else: result = 'Proliferative DR' # Serialize the result, you can add additional fields return jsonify(result=result) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction #preds = model_predict(img, model) preds = loadModel(img) # Process your result for human pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability classes = ['Abyssinian', 'Bengal', 'Bombay', 'British Shorthair', 'Egyptian Mau', 'Maine Coon', 'Persian', 'Russian Blue', 'Siamese', 'Sphynx'] #result = str(classes[0][0][1]) # Convert to string result = str(classes[np.argmax(np.array(preds[0]))]) result = result.replace('_', ' ').capitalize() ngetes = [] for idx in preds.argsort()[0][::-1][:5]: arr = classes[idx].split("\n-")[-1],"\n{:.2f}%\n".format(preds[0][idx]*100) #arr = [ '\n{}'.format(x) for x in arr ] ngetes.append(arr) # Serialize the result, you can add additional fields return jsonify(result=ngetes, probability=pred_proba) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction preds = model_predict(img, model) # Process your result for human pred_proba = "{:.3f}".format(np.max(preds[0], axis=-1)) # Max probability print("Maximum Probability: ",pred_proba) # pred_class = decode_predictions(preds, top=1) # ImageNet Decode # result = str(pred_class[0][0][1]) # Convert to string # result = result.replace('_', ' ').capitalize() labels = {0: 'Garbage Image', 1: 'Non-Garbage Image'} result = labels[np.argmax(preds[0], axis=-1)] print("Classified:",result) # Serialize the result, you can add additional fields return jsonify(result=result, probability=pred_proba) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction preds = model_predict(img, model) print(preds) # Process your result for human pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability print(pred_proba) threshold = .5 if preds[0] > threshold: result = 'bacterial' else: result = 'viral' # pred_class = decode_predictions(preds, top=1) # ImageNet Decode # result = str(pred_class[0][0][1]) # Convert to string # result = result.replace('_', ' ').capitalize() # Serialize the result, you can add additional fields return jsonify(result=result, probability=pred_proba) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction preds = get_embedding(model, img) f = open('store.pckl', 'rb') df, df_embs = pickle.load(f) f.close() # append extracted features to dataset df_embs = df_embs.append(pd.Series(preds), ignore_index=True) # compute cos similarities between objects: cosine_sim = 1 - pairwise_distances(df_embs, metric='cosine') # indices = pd.Series(range(len(df)), index=df.index) # return top-10 similar items for input image. It's index in the dataframe is 5000 (the last row) #idx_rec, idx_sim = get_recommender(5000, df, cosine_sim, indices, top_n=10) top_n = 5 sim_scores = list(enumerate(cosine_sim[-1])) sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) sim_scores = sim_scores[1:top_n + 1] idx_rec = [i[0] for i in sim_scores] idx_sim = [i[1] for i in sim_scores] out = df[['images.model', 'shortDescription', 'priceInfo.finalPrice']].loc[idx_rec].to_json(orient='index') # Serialize the result, you can add additional fields return jsonify(out) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Make prediction preds = model_predict(img, model) if preds == 0: result = "MEL" elif preds == 1: result = "NV" elif preds == 2: result = "BCC" elif preds == 3: result = "AK" elif preds == 4: result = "BKL" elif preds == 5: result = "DF" elif preds == 6: result = "VASC" elif preds == 7: result = "SCC" else: result = "UNK" return jsonify(result=result, probability=int(preds)) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json).convert('RGB') #print(request.files['file']) # Save the image to ./uploads #img.save("uploads/image.png") # Make prediction preds = model_predict(img, model) gradcam = gradcam_from_img(img) # Process your result for human if (preds[0][0] >= preds[0][1]): pred_class = "POSITIVE" else: pred_class = "NEGATIVE" pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability # Serialize the result, you can add additional fields return jsonify(result=pred_class, probability=pred_proba, file=img_to_base64(gradcam)) return None
def predict(): try: img = base64_to_pil(request.json) except Exception: return jsonify(error="expected string or bytes-like object"), 422 rgb_image_np = np.array(img.convert('RGB')) stds = rgb_image_np.std(axis=(0, 1)) means = rgb_image_np.mean(axis=(0, 1)) if 35 < np.average(stds) < 95 and 60 < np.average(means) < 180: img_result = x_ray.predict(img) condition_similarity_rate = [] if img_result['condition rate'] == []: return jsonify( result='NOT DETECTED', error='Invalid image' ), 200 else: for name, prob in img_result['condition rate']: condition_similarity_rate.append({'y': round(float(prob), 3), 'name': name}) print(condition_similarity_rate) return jsonify( condition_similarity_rate=condition_similarity_rate ), 200 else: file_name = "NOT_DETECTED/%s.jpg" % str(uuid.uuid4()) return jsonify( result='NOT DETECTED', error='Invalid image' ), 200
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction preds = model_predict(img, model) preds = np.argmax(preds, axis=1) # Process your result for human pred_class = [ ":( Oops, Not a Cat", ":) Yes, It's a Cat!", ] # ImageNet Decode result = [pred_class[index] for index in preds] # Convert to string # Serialize the result, you can add additional fields return jsonify(result=result[0]) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) img.save("uploads\image.jpg") img_path = os.path.join(os.path.dirname(__file__), 'uploads\image.jpg') os.path.isfile(img_path) img = image.load_img(img_path, target_size=(64, 64)) preds = model_predict(img, model) result = preds[0, 0] print(result) if result > 0.5: return jsonify(result="PNEMONIA") else: return jsonify(result="NORMAL") return None
def predict(): if request.method == 'POST': # Get the image from post request image = base64_to_pil(request.json['image']) height = int(request.json['height']) if not os.path.exists('../_tmp/in'): tf.gfile.MakeDirs('../_tmp/in') image.save('../_tmp/in/work.png') # res_im,seg=MODEL.run(image) # seg=cv2.resize(seg.astype(np.uint8),image.size) # mask_sel=(seg==15).astype(np.float32) # mask = 255*mask_sel.astype(np.uint8) # img = np.array(image) # img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # res = cv2.bitwise_and(img,img,mask = mask) # bg_removed = res + (255 - cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)) # result = main(bg_removed,height,None) result = demo.run('../_tmp/in', height) obj = '' with open('test.obj', 'r') as file: obj = file.read() return jsonify(result=result, obj=obj) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads img.save("./uploads/image.png") # Make prediction preds = model_predict(img, model1) switcher = { 0: "Airplane", 1: "auto-mobile", 2: "Bird", 3: "Cat", 4: "Deer", 5: "Dog", 6: "Frog", 7: "Horse", 8: "Ship", 9: "Truck" } result = switcher.get(int(preds), "Nothing") # Serialize the result, you can add additional fields return jsonify(result=result) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Save the image to ./uploads # img.save("./uploads/image.png") # Make prediction preds = model_predict(img, model) pred_class = np.argmax(preds, axis=1) # Process your result for human pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability #pred_class = decode_predictions(preds, top=1) # ImageNet Decode if pred_class == 0: result = 'Not subluxed' elif pred_class == 1: result = 'Subluxed' #result = str(pred_class[0][0][1]) # Convert to string result = result.replace('_', ' ').capitalize() # Serialize the result, you can add additional fields return jsonify(result=result, probability=pred_proba) return None
def upload_backend(label): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) img.save("uploads/" + label + "/" + str(secrets.token_hex(32)) + ".png") return jsonify(result="Thank you!") return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Make prediction return model_predict(img) return None
def predict(): if request.method == 'POST': img1, img2 = base64_to_pil(request.json) img3 = model_predict(img1, img2) img3 = cv2.resize(img3, (400, 300), interpolation=cv2.INTER_AREA) img3 = np_to_base64(img3) #return jsonify({'image_url': '/output.png'}) return jsonify(img3) return None
def predict(): if request.method == 'POST': # print(request.json) #  # # Get the image from post request # img = base64_to_pil(request.json) img = base64_to_pil(request.json).convert('L').resize((48, 48)) img = np.asarray(img).reshape(-1, 48, 48, 1).astype('float32') / 255 # print(img.shape) # # # Save the image to ./uploads # img.save("./uploads/image.png") begin = time.time() p_class = predict_class(img) predict_time1 = time.time() p_value = predict_value(img) predict_time2 = time.time() print("time:",str(predict_time1-begin),str(predict_time2-begin)) print("预测结果(lable):", p_class) print("预测结果:", label_dict[p_class[0]]) print("每个预测值:", p_value) # 终端显示每个预测结果对应的预测值 # probability_yang = show_predict_result(p_class, p_value) # prediction = model.predict_classes(img) # prediction_probability = model.predict(img) # print(prediction) # print(prediction_probability) # # # Make prediction # preds = model_predict(img, model) # # # Process your result for human # probability = "{:.3f}".format(np.amax(p_class[0])) # Max probability # pred_class = decode_predictions(preds, top=1) # ImageNet Decode # result = str(label_dict[p_class[0]]) # Convert to string result = result.replace('_', ' ').capitalize() # probability =str(p_value) # probability= json.dumps(p_value.item()) # probability=p_value.tolist() # probability = str(p_value) # Convert to string # probability = probability.replace('_', ' ').capitalize() probability = str(",".join(str(float(_*100)) for _ in p_value[0])) print(result) print(probability) # print(result) # # Serialize the result, you can add additional fields return jsonify(result=result, probability=probability) # return jsonify(result=result, probability=probability.yang) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) preds = model_predict(img, test) result = str(preds) return jsonify(result=result) print("end") return None
def predict(): # 需要从request对象读取表单内容: if request.method == 'POST': render_template('index.html') img = base64_to_pil(request.json) prediction = model_predict(img, model).numpy().item() prediction_class = class_map[prediction] return jsonify(result=prediction_class) return '<h3>Bad username or password.</h3>'
def predict(): if request.method == 'POST': img = base64_to_pil(request.json) hash_value = str(hex(hash(img.tobytes()))) response = inference_handler.predict(img) storage.temp_store(hash_value, img) return jsonify(result=response, hash_value=hash_value) return None
def findEdge(): img = base64_to_pil(request.form['image']) target = np.array([request.form['x'], request.form['y']], dtype=float) nearestPoint, distance = find_nearest_white(img, target) result = { 'x': int(nearestPoint[0]), 'y': int(nearestPoint[1]), 'distance': float(distance) } return jsonify(result)
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Make prediction ##preds = model_predict(img, model) pred_proba = model_predict(img, model) pred_class = np.argmax(pred_proba) # Process your result for human ##pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability pred_proba = "{:.3f}".format(np.argmax(pred_proba)) if pred_class < 0.9: result = 'No_fire' elif pred_class >= 0.9: result = 'Fire' sendEmail() #Make threshold basis results coming along result = result.replace('_', ' ').capitalize() #sendEmail() # Process your result for human ##pred_proba = "{:.3f}".format(np.amax(preds)) # Max probability ##pred_class = decode_predictions(preds, top=1) # ImageNet Decode ##result = str(pred_class[0][0][1]) # Convert to string ##result = result.replace('_', ' ').capitalize() # Serialize the result, you can add additional fields this_image = f"./images/{datetime.now().timestamp()}.png" ################# ACTION: SAVE YOUR MASKED IMAGE HERE ################## #Watever function you have change the `img.save` img.save(this_image) ################# ACTION END ################## image_file = open(this_image, "rb") image = base64.b64encode(image_file.read()) image_string = str( image )[2: -1] #converting it into string and removing the 'b' and the quotes from the start and end return jsonify(result=result, probability=pred_proba, image=image_string) return None
def predict(): if request.method == 'POST': img = base64_to_pil(request.json) img.save("uploads/" + filename + ".png") preds = model_predict(img, model) pred_proba = "{:.3f}".format(np.amax(preds)) pred_class = decode_predictions(preds, top=1) result = str(pred_class[0][0][1]) result = result.replace('_', ' ').capitalize() searchterm = result directory = "./images/" url = "https://www.google.co.in/search?q=" + searchterm + "&source=lnms&tbm=isch" browser = webdriver.Chrome('C:\WebDrivers\chromedriver.exe') browser.get(url) extensions = {"jpg", "jpeg", "png", "gif"} if not os.path.exists(directory): os.mkdir(directory) for _ in range(500): browser.execute_script("window.scrollBy(0,10000)") html = browser.page_source.split('["') imges = [] for i in html: if i.startswith('http') and i.split('"')[0].split( '.')[-1] in extensions: imges.append(i.split('"')[0]) print(imges) def save_image(img, directory): for img in imges: img_url = img img_type = img.split('.')[-1] try: path = os.path.join( directory, searchterm + "_" + str(uuid.uuid4()) + "." + 'jpg') urllib.request.urlretrieve(img, path) except Exception as e: print(e) save_image(imges, directory) browser.close() fantasy_zip = zipfile.ZipFile('C:\\Users\\User\\Desktop\\FYP\\images.zip', 'w') for folder, subfolders, files in os.walk( 'C:\\Users\\User\\Desktop\\FYP\\images'): for file in files: if file.endswith('.jpg'): fantasy_zip.write(os.path.join(folder, file), file, compress_type=zipfile.ZIP_DEFLATED) fantasy_zip.close() return jsonify(result=result, probability=pred_proba)
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json) # Make prediction preds = model_predict(img, model) labels = {'glioma': 0, 'meningioma': 1, "no_tumor":2,'pituitary': 3} prediction = list(labels.keys())[list(labels.values()).index(list(preds)[0])] result = str(prediction) # Convert to string result = result.replace('_', ' ').capitalize() return jsonify(result=result,preds = str(list(preds)))
def predict(): if request.method == 'POST': img = base64_to_pil(request.json) print(img.filename) path = 'image.jpg' img.save(path) result = neural.predict_breed(path) # Serialize the result return jsonify(result=result) return None
def predict(): if request.method == 'POST': # Get the image from post request img = base64_to_pil(request.json).convert('RGB') img.save("./uploads/image.jpg") # Make prediction #----------IDS PREDICTIONS ----------------- IDs = IDs_Predictions(img) #------------------------------------------- return jsonify(IDS=(IDs)) #return jsonify(result=(max_predicted_class, probability=pred_proba)) return None