def find_best_threshold(labels, probabilities):
    threshold = np.zeros(17)
    acc = 0
    # iterate over transformations
    for t_idx in range(len(transforms)):
        # iterate over class labels
        t = np.ones(17) * 0.15
        selected_preds = probabilities[t_idx]
        selected_preds = np.mean(selected_preds, axis=0)
        best_thresh = 0.0
        best_score = 0.0
        for i in range(17):
            for r in range(500):
                r /= 500
                t[i] = r
                preds = (selected_preds > t).astype(int)
                score = f2_score(labels, preds)
                if score > best_score:
                    best_thresh = r
                    best_score = score
            t[i] = best_thresh
        threshold = threshold + t
        acc += best_score
    print('AVG ACC,', acc / len(transforms))
    threshold = threshold / len(transforms)
    return threshold
def optimize_threshold(models, datasets, resolution=1000):
    """
    This function takes the validation set and find the best threshold for each class.
    """
    pred = []
    targets = []
    # predict
    # for index, data in enumerate(zip(*datasets)):
    for batch_index, (image, target, _) in enumerate(datasets[0]):
        image = Variable(image.cuda(), volatile=True)
        output = F.sigmoid(models[0](image))
        pred.append(output.data.cpu().numpy())
        targets.append(target.cpu().numpy())

    pred = np.vstack(pred)
    targets = np.vstack(targets)
    threshold = [0.15] * 17
    # optimize
    for i in range(17):
        best_thresh = 0.0
        best_score = 0.0
        for r in range(resolution):
            r /= resolution
            threshold[i] = r
            labels = (pred > threshold).astype(int)
            score = f2_score(targets, labels)
            if score > best_score:
                best_thresh = r
                best_score = score
        threshold[i] = best_thresh
        print(i, best_score, best_thresh)
    return threshold
def find_best_threshold(labels, probabilities):
    threshold = np.zeros(17)

    # iterate over transformations
    for t_idx in range(len(transforms)):
        # iterate over class labels
        t = np.ones(17) * 0.15
        selected_preds = probabilities[t_idx]
        selected_preds = np.mean(selected_preds, axis=0)
        best_thresh = 0.0
        best_score = 0.0
        for i in range(17):
            for r in range(500):
                r /= 500
                t[i] = r
                preds = (selected_preds > t).astype(int)
                score = f2_score(labels, preds)
                if score > best_score:
                    best_thresh = r
                    best_score = score
            t[i] = best_thresh
            print(
                'Transform index {}, score {}, threshold {}, label {}'.format(
                    t_idx, best_score, best_thresh, i))
        print('Transform index {}, threshold {}, score {}'.format(
            t_idx, t, best_score))
        threshold = threshold + t
    threshold = threshold / len(transforms)
    return threshold
Example #4
0
def find_threshold():
    threshold = np.zeros(17)
    acc  = 0
    labels = valid_loader.dataset.labels
    pred_files = [f for f in glob.glob('probs/*.txt') if 'blender' in f]
    for f in pred_files:
        selected_preds = np.loadtxt(f)
        t = np.ones(17) * 0.15
        # selected_preds = probabilities[t_idx]
        # selected_preds = np.mean(selected_preds, axis=0)
        best_thresh = 0.0
        best_score = 0.0
        for i in range(17):
            for r in range(500):
                r /= 500
                t[i] = r
                preds = (selected_preds > t).astype(int)
                score = f2_score(labels, preds)
                if score > best_score:
                    best_thresh = r
                    best_score = score
            t[i] = best_thresh
        threshold = threshold + t
        acc += best_score
    print('AVG ACC,', acc / len(pred_files))
    threshold = threshold / len(pred_files)
    return threshold