Example #1
0
    def separations(self):
        """Plot the separation between different samples for each target
           1D: Bar graph showing the separation between S/B (0,1)
               https://matplotlib.org/gallery/lines_bars_and_markers/barh.html
           2D: Matrix (a la correlation matrix) with scale (0,1) showing separation between S/B in 2D plane
        """
        # 1D
        fig, ax = plt.subplots()
        data = {}

        # calculate the separations
        for feature in self.features:
            separation = util.getSeparation(self.targets[0].df[feature],self.targets[1].df[feature])
            data[feature] = separation

        sorted_data_keys = sorted( data, key=data.get, reverse=True )  # sort by largest -> smallest separation
        ticks = range(len(self.features))

        ax.barh( ticks, [data[f] for f in sorted_data_keys], align='center' )

        ax.set_yticks()
        ax.set_yticklabels(sorted_data_keys)
        ax.invert_yaxis()
        ax.set_xlim([0,1])

        ax.set_xlabel(r'Separation',fontsize=22,ha='right',va='top',position=(1,0))
        ax.set_xticklabels(ax.get_xticks(),fontsize=22)
        ax.xaxis.set_major_formatter(FormatStrFormatter('%g'))

        ## CMS/COM Energy Label + Signal name
        cms_stamp = hpl.CMSStamp(self.CMSlabelStatus)
        cms_stamp.coords = [0.02,1.00]
        cms_stamp.fontsize = 16
        cms_stamp.va = 'bottom'
        ax.text(0.02,1.00,cms_stamp.text,fontsize=cms_stamp.fontsize,
                ha=cms_stamp.ha,va=cms_stamp.va,transform=ax.transAxes)

        energy_stamp    = hpl.EnergyStamp()
        energy_stamp.ha = 'right'
        energy_stamp.coords = [0.99,1.00]
        energy_stamp.fontsize = 16
        energy_stamp.va = 'bottom'
        ax.text(energy_stamp.coords[0],energy_stamp.coords[1],energy_stamp.text, 
                fontsize=energy_stamp.fontsize,ha=energy_stamp.ha, va=energy_stamp.va, transform=ax.transAxes)

        ax.text(0.03,0.93,target.label,fontsize=16,ha='left',va='top',transform=ax.transAxes)

        plt.savefig(self.output_dir+"/separations1D_{0}_{1}.{2}".format(target.name,self.date,self.image_format),
                    format=self.image_format,dpi=300,bbox_inches='tight')
        plt.close()

        return
Example #2
0
    def features(self):
        """
        Plot the features
        For classification, compare different targets
        For regression, just plot the features        <- should do data/mc plots instead!
        """
        self.msg_svc.INFO("DL : Plotting features.")

        plt_feature = self.df.keys()
        for hi,feature in enumerate(plt_feature):

            if feature=='target': continue

            hist = HepPlotter("histogram",1)

            hist.normed  = True
            hist.stacked = False
            hist.logplot = False
            hist.binning = self.variable_labels[feature].binning
            hist.x_label = self.variable_labels[feature].label
            hist.y_label = "Events"
            hist.format  = self.image_format
            hist.saveAs  = self.output_dir+"/hist_"+feature+"_"+self.date
            hist.ratio_plot  = True
            hist.ratio_type  = 'significance'
            hist.CMSlabel    = 'top left'
            hist.CMSlabelStatus   = self.CMSlabelStatus
            hist.numLegendColumns = 1

            # Add some extra text to the plot
            if self.processlabel: hist.extra_text.Add(self.processlabel,coords=[0.03,0.80]) # physics process that produces these features

            hist.initialize()

            for t,target in enumerate(self.targets):
                hist.Add(target.df[feature], name=target.name, draw='step',
                         linecolor=target.color, label=target.label)

            if self.classification=='binary':
                separation = util.getSeparation(self.targets[0].df[feature],self.targets[1].df[feature])
                hist.extra_text.Add("Separation = {0:.2f}".format(separation),coords=[0.03,0.73])

            p = hist.execute()
            hist.savefig()

        return
Example #3
0
    def prediction(self, train_data={}, test_data={}):
        """Plot the training and testing predictions"""
        self.msg_svc.INFO("DL : Plotting DNN prediction. ")

        # Plot all k-fold cross-validation results
        for i, (train, trainY, test, testY) in enumerate(
                zip(train_data['X'], train_data['Y'], test_data['X'],
                    test_data['Y'])):

            hist = HepPlotter("histogram", 1)

            hist.ratio_plot = True
            hist.ratio_type = "ratio"
            hist.y_ratio_label = "Test/Train"
            hist.label_size = 14
            hist.normed = True  # compare shape differences (likely don't have the same event yield)
            hist.format = self.image_format
            hist.saveAs = "{0}/hist_DNN_prediction_kfold{1}_{2}".format(
                self.output_dir, i, self.date)
            hist.binning = [bb / 10. for bb in range(11)]
            hist.stacked = False
            hist.logplot = {"y": False, "x": False, "data": False}
            hist.x_label = "Prediction"
            hist.y_label = "Arb. Units"
            hist.CMSlabel = 'top left'
            hist.CMSlabelStatus = self.CMSlabelStatus
            hist.numLegendColumns = 1

            if self.processlabel:
                hist.extra_text.Add(self.processlabel,
                                    coords=[0.03, 0.80],
                                    fontsize=14)

            hist.initialize()

            test_data = []
            train_data = []
            json_data = {}
            for t, target in enumerate(self.targets):
                ## Training
                target_value = target.target_value
                hist.Add(train[trainY == target_value],
                         name=target.name + '_train',
                         linecolor=target.color,
                         linewidth=2,
                         draw='step',
                         label=target.label + " Train",
                         ratio_den=True,
                         ratio_num=False,
                         ratio_partner=target.name + '_test')
                ## Testing
                hist.Add(test[testY == target_value],
                         name=target.name + '_test',
                         linecolor=target.color,
                         color=target.color,
                         linewidth=0,
                         draw='stepfilled',
                         label=target.label + " Test",
                         alpha=0.5,
                         ratio_den=False,
                         ratio_num=True,
                         ratio_partner=target.name + '_train')

                ## Save data to JSON file
                json_data[target.name + "_train"] = {}
                json_data[target.name + "_test"] = {}
                d_tr, b_tr = np.histogram(train[trainY == target_value],
                                          bins=hist.binning)
                d_te, b_te = np.histogram(test[testY == target_value],
                                          bins=hist.binning)

                json_data[target.name + "_train"]["binning"] = b_tr.tolist()
                json_data[target.name + "_train"]["content"] = d_tr.tolist()
                json_data[target.name + "_test"]["binning"] = b_te.tolist()
                json_data[target.name + "_test"]["content"] = d_te.tolist()

                test_data.append(d_te.tolist())
                train_data.append(d_tr.tolist())

            separation = util.getSeparation(test_data[0], test_data[1])
            hist.extra_text.Add("Test Separation = {0:.4f}".format(separation),
                                coords=[0.03, 0.72])

            p = hist.execute()
            hist.savefig()

            # save results to JSON file (just histogram values & bins) to re-make plots
            with open("{0}.json".format(hist.saveAs), 'w') as outfile:
                json.dump(json_data, outfile)

        return
Example #4
0
    def features(self):
        """
        Plot the features
        For classification, compare different targets
        For regression, just plot the features        <- should do data/mc plots instead!
        """
        self.msg_svc.INFO("DL : Plotting features.")

        target0 = self.targets[0]  # hard-coded for binary comparisons
        target1 = self.targets[1]
        plt_features = self.df.keys()
        for hi, feature in enumerate(plt_features):

            if feature == 'target': continue

            binning = self.variable_labels[feature].binning

            hist = HepPlotter("histogram", 1)

            hist.normed = True
            hist.stacked = False
            hist.logplot = {"y": False, "x": False, "data": False}
            hist.binning = binning
            hist.x_label = self.variable_labels[feature].label
            hist.y_label = "Events"
            hist.format = self.image_format
            hist.saveAs = self.output_dir + "/hist_" + feature + "_" + self.date
            hist.ratio_plot = True
            hist.ratio_type = 'ratio'
            hist.y_ratio_label = '{0}/{1}'.format(target0.label, target1.label)
            hist.CMSlabel = 'top left'
            hist.CMSlabelStatus = self.CMSlabelStatus
            hist.numLegendColumns = 1

            # Add some extra text to the plot
            if self.processlabel:
                hist.extra_text.Add(self.processlabel, coords=[
                    0.03, 0.80
                ])  # physics process that produces these features

            hist.initialize()

            hist.Add(target0.df[feature],
                     name=target0.name,
                     draw='step',
                     linecolor=target0.color,
                     label=target0.label,
                     ratio_num=True,
                     ratio_den=False,
                     ratio_partner=target1.name)

            hist.Add(target1.df[feature],
                     name=target1.name,
                     draw='step',
                     linecolor=target1.color,
                     label=target1.label,
                     ratio_num=False,
                     ratio_den=True,
                     ratio_partner=target0.name)

            if self.classification == 'binary':

                t0, _ = np.histogram(target0.df[feature],
                                     bins=binning,
                                     normed=True)
                t1, _ = np.histogram(target1.df[feature],
                                     bins=binning,
                                     normed=True)
                separation = util.getSeparation(t0, t1)
                hist.extra_text.Add("Separation = {0:.4f}".format(separation),
                                    coords=[0.03, 0.73])

            p = hist.execute()
            hist.savefig()

        return
Example #5
0
    def getSeparations(self):
        """Calculate separations between classes for each feature"""
        self.separations = dict((k, {}) for k in self.listOfFeatures)
        for featurepairs in self.listOfFeaturePairs:
            self.separations['-'.join(featurepairs)] = {}

        # One dimensional separations
        for target in self.target_pairs:
            target_a = [i for i in self.targets if i.name == target[0]][0]
            target_b = [i for i in self.targets if i.name == target[1]][0]

            saveAs = "{0}/separations1D_{1}-{2}_{3}".format(
                self.output_dir, target_a.name, target_b.name, self.date)
            fcsv = open("{0}.csv".format(saveAs), "w")

            for feature in self.listOfFeatures:
                if feature == 'target': continue

                # bin the data to make separation calculation simple
                data_a, _ = np.histogram(
                    target_a.df[feature],
                    normed=True,
                    bins=self.variable_labels[feature].binning)
                data_b, _ = np.histogram(
                    target_b.df[feature],
                    normed=True,
                    bins=self.variable_labels[feature].binning)

                separation = util.getSeparation(data_a, data_b)
                self.separations[feature]['-'.join(target)] = separation

                # Save separation info to CSV file
                fcsv.write("{0},{1}".format(feature, separation))
            fcsv.close()

            # Two dimensional separations
            saveAs = "{0}/separations2D_{1}-{2}_{3}".format(
                self.output_dir, target_a.name, target_b.name, self.date)
            fcsv = open("{0}.csv".format(saveAs), "w")

            for featurepairs in self.listOfFeaturePairs:
                feature_x = featurepairs[0]
                feature_y = featurepairs[1]

                binning_x = self.variable_labels[feature_x].binning
                binning_y = self.variable_labels[feature_y].binning

                # bin the data to make separation calculation simple
                data_a, _, _ = np.histogram2d(target_a.df[feature_x],
                                              target_a.df[feature_y],
                                              bins=[binning_x, binning_y],
                                              normed=True)
                data_b, _, _ = np.histogram2d(target_b.df[feature_x],
                                              target_b.df[feature_y],
                                              bins=[binning_x, binning_y],
                                              normed=True)

                separation = util.getSeparation2D(data_a, data_b)
                self.separations['-'.join(featurepairs)]['-'.join(
                    target)] = separation

                # Save separation info to CSV file
                fcsv.write("{0},{1},{2}".format(feature_x, feature_y,
                                                separation))
            fcsv.close()

        return
Example #6
0
    def prediction(self, train_data={}, test_data={}, i=0):
        """
        Plot the training and testing predictions. 
        To save on memory, pass this TH1s directly, rather than raw values.
        """
        self.msg_svc.INFO("DL : Plotting DNN prediction. ")
        binning = [bb * 0.1 for bb in range(11)]

        # Make a plot for each target value (e.g., QCD prediction to be QCD; Top prediction to be QCD, etc)
        hist = Histogram1D()

        hist.normed = True  # compare shape differences (likely don't have the same event yield)
        hist.format = self.image_format
        hist.saveAs = "{0}/hist_DNN_prediction_{1}".format(
            self.output_dir, self.date)
        hist.binning = binning
        hist.stacked = False
        hist.x_label = "Prediction"
        hist.y_label = "A.U."
        hist.CMSlabel = 'outer'
        hist.CMSlabelStatus = self.CMSlabelStatus
        hist.legend['fontsize'] = 18

        hist.ratio.value = "ratio"
        hist.ratio.ylabel = "Train/Test"

        hist.initialize()

        json_data = {}
        for t, target in enumerate(self.targets):

            target_value = target.target_value  # arrays for multiclassification

            train_t = train_data[target.name]
            test_t = test_data[target.name]

            train_kwargs = {
                "draw_type": "step",
                "edgecolor": target.color,
                "label": target.label + " Train"
            }
            test_kwargs = {
                "draw_type": "stepfilled",
                "edgecolor": target.color,
                "color": target.color,
                "linewidth": 0,
                "alpha": 0.5,
                "label": target.label + " Test"
            }

            hist.Add(train_t, name=target.name + '_train',
                     **train_kwargs)  # Training
            hist.Add(test_t, name=target.name + '_test',
                     **test_kwargs)  # Testing

            hist.ratio.Add(numerator=target.name + '_train',
                           denominator=target.name + '_test')

            ## Save data to JSON file
            if isinstance(train_t, ROOT.TH1):
                d_tr = hpt.hist2list(train_t)
                d_te = hpt.hist2list(test_t)
                json_data[target.name + "_train"] = {
                    "binning": d_tr.bins.tolist(),
                    "content": d_tr.content.tolist()
                }
                json_data[target.name + "_test"] = {
                    "binning": d_te.bins.tolist(),
                    "content": d_te.content.tolist()
                }
            else:
                json_data[target.name + "_train"] = {
                    "binning": hist.binning,
                    "content": train_t
                }
                json_data[target.name + "_test"] = {
                    "binning": hist.binning,
                    "content": test_t
                }

        # calculate separation between predictions
        for t, target in enumerate(self.target_pairs):
            data_a = json_data[target[0] + "_test"]["content"]
            data_b = json_data[target[1] + "_test"]["content"]

            separation = util.getSeparation(data_a, data_b)
            hist.extra_text.Add("Test Sep({0},{1}) = {2:.2f}".format(
                target[0], target[1], separation),
                                coords=[0.03, (0.97 - 0.08 * t)])

            json_data['-'.join(target) + "_test"] = {"separation": separation}

        p = hist.execute()
        hist.savefig()

        # save results to JSON file (just histogram values & bins) to re-make plots
        with open("{0}.json".format(hist.saveAs), 'w') as outfile:
            json.dump(json_data, outfile)

        return
Example #7
0
    def feature(self,dataframe,ndims=-1):
        """
        Plot the features
          For classification, compare different targets
          For regression, just plot the features

        @param dataframe    Pandas dataframe with data to be plotted
        @param ndims        Number of dimensions to plot (-1=ALL; 1=1D features only) 
                            [always plot 1D features, for now]
        """
        self.msg_svc.DEBUG("DL : Plotting features.")

        self.separations = dict( (k,{}) for k in self.features)
        for featurepairs in self.featurePairs:
             self.separations['-'.join(featurepairs)] = {}

        ## ++ Plot the features for each target
        for hi,feature in enumerate(self.features):
            vl = self.variable_labels[feature]

            hist = Histogram1D()

            hist.backend = self.backend
            hist.normed  = True
            hist.stacked = False
            hist.binning = vl.binning
            hist.x_label = vl.label
            hist.y_label = "A.U." if hist.normed else "Events"
            hist.format  = self.image_format
            hist.saveAs  = self.output_dir+"/hist_"+feature
            hist.CMSlabel = 'outer'
            hist.CMSlabelStatus = self.CMSlabelStatus
            hist.legend['fontsize'] = 10

            hist.ratio.value  = "significance"
            hist.ratio.ylabel = r"S(A/$\sqrt{\text{B}}$)"
            hist.ratio.update_legend = True

            hist.initialize()

            # Draw the distribution for this feature for each NN class
            histValues = {}
            for c in self.classCollection:
                kwargs = {"draw_type":"step","edgecolor":c.color,"label":c.label}

                # Put into histogram before passing to hepPlotter to reduce memory
                h,bx = np.histogram(dataframe[dataframe.target==c.value][feature],bins=vl.binning)
                bin_centers = 0.5*(bx[:-1]+bx[1:])
                hist.Add(bin_centers,weights=h,name=c.name,**kwargs)
                histValues[c.name] = h.copy()

            # Add ratio plot comparing the targets (in pairs) for this feature
            # e.g., feature (QCD) vs feature (QB), etc.
            numerators = {}
            markers = ['o','v','^']         # for ratios with the same numerator, change the marker style
            for pair in self.class_pairs:
                try:
                    idx = numerators[pair[0]]
                    numerators[pair[0]]+=1
                except KeyError:
                    idx = 0
                    numerators[pair[0]]=1
                num = self.classCollection.get(pair[0])
                den = self.classCollection.get(pair[1])
                hist.ratio.Add(numerator=pair[0],denominator=pair[1],draw_type='errorbar',
                               mec='k',mfc=num.color,ecolor=num.color,fmt=markers[idx],
                               label=r"S({0},{1})".format(num.label,den.label))

            p = hist.execute()
            hist.savefig()

            ## Calculate 1D separations for this feature between classes
            for pair in self.class_pairs:
                data_a = histValues.get(pair[0])
                data_b = histValues.get(pair[1])
                separation = util.getSeparation(data_a,data_b)
                self.separations[feature]['-'.join(pair)] = separation

        ## ++ Plot two features against each other for each target (multi-jet,W,QB,tt_bckg)
        for hi,featurepairs in enumerate(self.featurePairs):
            xfeature = featurepairs[0]
            yfeature = featurepairs[1]

            xvar = self.variable_labels[xfeature]
            yvar = self.variable_labels[yfeature]
            xbins = xvar.binning
            ybins = yvar.binning

            histValues = {}
            for c in self.classCollection:
                # save memory by making the histogram here and passing the result to hepPlotter
                xdf = dataframe[dataframe.target==c.value][xfeature]
                ydf = dataframe[dataframe.target==c.value][yfeature]
                h,binsx,binsy = np.histogram2d(xdf,ydf,bins=[xbins,ybins])
                histValues[c.name] = h
                # h[0] yields the y-axis array for the first bin in x

                if ndims==1: continue  # only plot 1D features; still calculate 2D features

                hist = Histogram2D()

                hist.backend  = self.backend
                hist.colormap = 'default'
                hist.colorbar['title'] = "Events"

                try:
                    hist.binning = [xbins.tolist(),ybins.tolist()]
                except:
                    hist.binning = [xbins,ybins]
                hist.x_label = xvar.label
                hist.y_label = yvar.label
                hist.format  = self.image_format
                hist.saveAs  = self.output_dir+"/hist2d_"+c.name+"_"+xfeature+"-"+yfeature
                hist.CMSlabel = 'outer'
                hist.CMSlabelStatus = self.CMSlabelStatus
                hist.logplot['data'] = True

                hist.extra_text.Add(c.label,coords=[0.03,0.97])

                hist.initialize()

                # create dummy binning
                binsx  = 0.5*(binsx[:-1]+binsx[1:])
                binsy  = 0.5*(binsy[:-1]+binsy[1:])
                xdummy = binsx.repeat(len(binsy))
                ydummy = np.tile(binsy, (1,len(binsx)) )[0]

                hist.Add([xdummy,ydummy],weights=h.flatten(),name=c.name)

                p = hist.execute()
                hist.savefig(dpi=100)

            ## Calculate 2D separations for these features between classes
            for pair in self.class_pairs:
                data_a = histValues[pair[0]]
                data_b = histValues[pair[1]]
                separation = util.getSeparation(data_a,data_b)
                self.separations['-'.join(featurepairs)]['-'.join(pair)] = separation

        ## ++ Save separation info to CSV file
        #     Storing raw values of separations to plot / analyze later
        for pair in self.class_pairs:
            saveAs1 = "{0}/separations1D_{1}-{2}".format(self.output_dir,pair[0],pair[1])
            saveAs2 = "{0}/separations2D_{1}-{2}".format(self.output_dir,pair[0],pair[1])

            fcsv1 = open("{0}.csv".format(saveAs1),"w")
            fcsv2 = open("{0}.csv".format(saveAs2),"w")

            fcsv1.write("feature,separation")
            fcsv2.write("xfeature,yfeature,separation")

            for f in self.separations.keys():
                separation = self.separations[f]['-'.join(pair)]
                if '-' in f:
                    feature_x,feature_y = f.split('-')
                    fcsv2.write("{0},{1},{2}\n".format(feature_x,feature_y,separation))
                else:
                    fcsv1.write("{0},{1}\n".format(f,separation))

            fcsv1.close() 
            fcsv2.close() 


        return
Example #8
0
    def _prediction(self,train_data={},test_data={},c=None):
        """Make the plot for DNN predictions"""
        target_label = ''
        target_name  = ''
        if c is not None:
            target_label = ": {0}".format(self.sample_labels[c.name].label)
            target_name  = "_{0}".format(c.name)

        hist = Histogram1D()

        hist.backend = self.backend
        hist.normed  = True  # compare shape differences (likely don't have the same event yield)
        hist.format  = self.image_format
        hist.saveAs  = "{0}/hist_DNN_prediction{1}".format(self.output_dir,target_name)
        hist.stacked = False
        hist.x_label = "Prediction{0}".format(target_label)
        hist.y_label = "A.U."
        hist.CMSlabel = 'outer'
        hist.CMSlabelStatus   = self.CMSlabelStatus
        hist.legend['fontsize'] = 10

        hist.ratio.value  = "ratio"
        hist.ratio.ylabel = "Train/Test"

        hist.initialize()

        json_data = {}
        for t,cc in enumerate(self.classCollection):

            target_value = cc.value  # arrays for multiclassification 

            # Access histogram data (for binary or multi-classification)
            try:
                train_t = train_data[c.name][cc.name]
                test_t  = test_data[c.name][cc.name]
            except:
                train_t = train_data[cc.name]
                test_t  = test_data[cc.name]

            train_weights = train_t[0]
            train_bins    = train_t[1]
            train_dummy   = hpt.midpoints(train_bins)
            train_kwargs  = {"draw_type":"step","edgecolor":cc.color,
                             "label":cc.label+" Train"}

            test_weights = test_t[0]
            test_bins    = test_t[1]
            test_dummy   = hpt.midpoints(test_bins)
            test_kwargs  = {"draw_type":"stepfilled","edgecolor":cc.color,
                            "color":cc.color,"linewidth":0,"alpha":0.5,
                            "label":cc.label+" Test"}

            hist.binning = train_bins  # should be the same for train/test

            hist.Add(train_dummy,weights=train_weights,\
                     name=cc.name+'_train',**train_kwargs) # Training
            hist.Add(test_dummy,weights=test_weights,\
                     name=cc.name+'_test',**test_kwargs)    # Testing

            hist.ratio.Add(numerator=cc.name+'_train',denominator=cc.name+'_test')

            ## Save data to JSON file
            json_data[cc.name+"_train"] = {"binning":train_t[1].tolist(),
                                           "content":train_t[0].tolist()}
            json_data[cc.name+"_test"]  = {"binning":test_t[1].tolist(),
                                           "content":test_t[0].tolist()}

        p = hist.execute()
        hist.savefig()

        # calculate separation between predictions
        separations = OrderedDict()
        for t,target in enumerate(self.class_pairs):
            data_a = json_data[ target[0]+"_test" ]["content"]
            data_b = json_data[ target[1]+"_test" ]["content"]
            separation = util.getSeparation(np.asarray(data_a),np.asarray(data_b))
            json_data[ '-'.join(target)+"_test" ] = {"separation":separation}
            separations['-'.join(target)] = separation

        # save results to JSON file (just histogram values & bins) to re-make plots
        with open("{0}.json".format(hist.saveAs), 'w') as outfile:
            json.dump(json_data, outfile)


        ## Plot separation between predictions for given target
        saveAs = "{0}/hist_DNN_prediction_sep_{1}".format(self.output_dir,target_name)
        sorted_sep = sorted(separations, key=separations.__getitem__) # sort data by separation value
        ypos = np.arange(len(sorted_sep))

        # make the bar plot
        fig,ax = plt.subplots()
        ax.barh(ypos, [separations[i] for i in sorted_sep], align='center')
        ax.set_yticks(ypos)
        yticklabels = []
        for i in sorted_sep:
            split  = i.split("-")
            first  = self.sample_labels[ split[0] ].label
            second = self.sample_labels[ split[1] ].label
            yticklabels.append( '{0}-{1}'.format(first,second) )
        ax.set_yticklabels(yticklabels,fontsize=12)
        ax.set_xticklabels([self.formatter(i) for i in ax.get_xticks()])
        ax.set_xlabel("Separation",ha='right',va='top',position=(1,0))

        # CMS/COM Energy Label + Signal name
        self.stamp_cms(ax)
        self.stamp_energy(ax)
        ax.text(0.95,0.05,"DNN Prediction{0}".format(target_label),fontsize=16,
                ha='right',va='bottom',transform=ax.transAxes)

        plt.savefig("{0}.{1}".format(saveAs,self.image_format))
        plt.close()