Example #1
0
def main():

    # load data
    data_path = '../data/output/records_final.pkl'
    voc_path = '../data/output/voc_final.pkl'

    ddi_adj_path = '../data/output/ddi_A_final.pkl'
    device = torch.device('cuda:{}'.format(args.cuda))

    ddi_adj = dill.load(open(ddi_adj_path, 'rb'))
    data = dill.load(open(data_path, 'rb'))

    voc = dill.load(open(voc_path, 'rb'))
    diag_voc, pro_voc, med_voc = voc['diag_voc'], voc['pro_voc'], voc[
        'med_voc']

    np.random.seed(1203)
    np.random.shuffle(data)

    split_point = int(len(data) * 3 / 5)
    data_train = data[:split_point]
    eval_len = int(len(data[split_point:]) / 2)
    data_test = data[split_point:split_point + eval_len]
    data_eval = data[split_point + eval_len:]

    voc_size = (len(diag_voc.idx2word), len(pro_voc.idx2word),
                len(med_voc.idx2word))
    print(voc_size)
    model = DualNN(voc_size, ddi_adj, emb_dim=args.dim, device=device)
    # model.load_state_dict(torch.load(open(args.resume_path, 'rb')))

    if args.Test:
        model.load_state_dict(torch.load(open(args.resume_path, 'rb')))
        model.to(device=device)
        tic = time.time()
        label_list, prob_add, prob_delete = eval(model, data_eval, voc_size, 0,
                                                 1)

        threshold1, threshold2 = [], []
        for i in range(label_list.shape[1]):
            _, _, boundary_add = roc_curve(label_list[:, i],
                                           prob_add[:, i],
                                           pos_label=1)
            _, _, boundary_delete = roc_curve(label_list[:, i],
                                              prob_delete[:, i],
                                              pos_label=0)
            threshold1.append(boundary_add[min(round(len(boundary_add) * 0.05),
                                               len(boundary_add) - 1)])
            threshold2.append(boundary_delete[min(
                round(len(boundary_delete) * 0.05),
                len(boundary_delete) - 1)])
        # threshold1 = np.ones(voc_size[2]) * np.mean(threshold1)
        # threshold2 = np.ones(voc_size[2]) * np.mean(threshold2)
        print(np.mean(threshold1), np.mean(threshold2))
        eval(model, data_test, voc_size, 0, 0, threshold1, threshold2)
        print('test time: {}'.format(time.time() - tic))

        return

    model.to(device=device)
    print('parameters', get_n_params(model))
    # exit()
    optimizer = RMSprop(list(model.parameters()),
                        lr=args.lr,
                        weight_decay=args.weight_decay)

    # start iterations
    history = defaultdict(list)
    best_epoch, best_ja = 0, 0

    EPOCH = 40
    for epoch in range(EPOCH):
        t = 0
        tic = time.time()
        print('\nepoch {} --------------------------'.format(epoch + 1))

        model.train()
        for step, input in enumerate(data_train):
            if len(input) < 2: continue
            loss = 0
            for adm_idx, adm in enumerate(input):
                if adm_idx == 0: continue

                seq_input = input[:adm_idx + 1]

                loss_bce_target = np.zeros((1, voc_size[2]))
                loss_bce_target[:, adm[2]] = 1

                loss_bce_target_last = np.zeros((1, voc_size[2]))
                loss_bce_target_last[:, input[adm_idx - 1][2]] = 1

                add_target = np.zeros((1, voc_size[2]))
                add_target[:, np.where(loss_bce_target == 1)[1]] = 1
                delete_target = np.zeros((1, voc_size[2]))
                delete_target[:, np.where(loss_bce_target == 0)[1]] = 1

                loss_multi_target = np.full((1, voc_size[2]), -1)
                for idx, item in enumerate(adm[2]):
                    loss_multi_target[0][idx] = item

                loss_multi_target_last = np.full((1, voc_size[2]), -1)
                for idx, item in enumerate(input[adm_idx - 1][2]):
                    loss_multi_target_last[0][idx] = item

                loss_multi_add_target = np.full((1, voc_size[2]), -1)
                for i, item in enumerate(np.where(add_target == 1)[0]):
                    loss_multi_add_target[0][i] = item

                loss_multi_delete_target = np.full((1, voc_size[2]), -1)
                for i, item in enumerate(np.where(delete_target == 1)[0]):
                    loss_multi_delete_target[0][i] = item

                add_result, delete_result = model(seq_input)

                loss_bce = F.binary_cross_entropy_with_logits(add_result, torch.FloatTensor(add_target).to(device)) + \
                    F.binary_cross_entropy_with_logits(delete_result, torch.FloatTensor(delete_target).to(device))
                loss_multi = F.multilabel_margin_loss(F.sigmoid(add_result), torch.LongTensor(loss_multi_add_target).to(device)) + \
                    F.multilabel_margin_loss(F.sigmoid(delete_result), torch.LongTensor(loss_multi_delete_target).to(device))

                # l2 = 0
                # for p in model.parameters():
                #     l2 = l2 + (p ** 2).sum()

                loss += 0.95 * loss_bce + 0.05 * loss_multi

            optimizer.zero_grad()
            loss.backward(retain_graph=True)
            optimizer.step()

            llprint('\rtraining step: {} / {}'.format(step, len(data_train)))

        print()
        tic2 = time.time()
        ddi_rate, ja, prauc, avg_p, avg_r, avg_f1, add, delete, avg_med = eval(
            model, data_eval, voc_size, epoch)
        print('training time: {}, test time: {}'.format(
            time.time() - tic,
            time.time() - tic2))

        history['ja'].append(ja)
        history['ddi_rate'].append(ddi_rate)
        history['avg_p'].append(avg_p)
        history['avg_r'].append(avg_r)
        history['avg_f1'].append(avg_f1)
        history['prauc'].append(prauc)
        history['add'].append(add)
        history['delete'].append(delete)
        history['med'].append(avg_med)

        if epoch >= 5:
            print(
                'ddi: {}, Med: {}, Ja: {}, F1: {}, Add: {}, Delete: {}'.format(
                    np.mean(history['ddi_rate'][-5:]),
                    np.mean(history['med'][-5:]), np.mean(history['ja'][-5:]),
                    np.mean(history['avg_f1'][-5:]),
                    np.mean(history['add'][-5:]),
                    np.mean(history['delete'][-5:])))

        torch.save(model.state_dict(), open(os.path.join('saved', args.model_name, \
            'Epoch_{}_JA_{:.4}_DDI_{:.4}.model'.format(epoch, ja, ddi_rate)), 'wb'))

        if epoch != 0 and best_ja < ja:
            best_epoch = epoch
            best_ja = ja

        print('best_epoch: {}'.format(best_epoch))

    dill.dump(
        history,
        open(
            os.path.join('saved', args.model_name,
                         'history_{}.pkl'.format(args.model_name)), 'wb'))
Example #2
0
def main():

    # load data
    data_path = '../data/output/records_final.pkl'
    voc_path = '../data/output/voc_final.pkl'

    ddi_adj_path = '../data/output/ddi_A_final.pkl'
    device = torch.device('cuda:{}'.format(args.cuda))

    ddi_adj = dill.load(open(ddi_adj_path, 'rb'))
    data = dill.load(open(data_path, 'rb'))

    voc = dill.load(open(voc_path, 'rb'))
    diag_voc, pro_voc, med_voc = voc['diag_voc'], voc['pro_voc'], voc[
        'med_voc']

    np.random.seed(1203)
    np.random.shuffle(data)

    split_point = int(len(data) * 3 / 5)
    data_train = data[:split_point]
    eval_len = int(len(data[split_point:]) / 2)
    data_test = data[split_point:split_point + eval_len]
    data_eval = data[split_point + eval_len:]

    voc_size = (len(diag_voc.idx2word), len(pro_voc.idx2word),
                len(med_voc.idx2word))
    print(voc_size)
    model = SimNN(voc_size, ddi_adj, emb_dim=args.dim, device=device)
    # model.load_state_dict(torch.load(open(args.resume_path, 'rb')))

    if args.Test:
        model.load_state_dict(torch.load(open(args.resume_path, 'rb')))
        model.to(device=device)
        tic = time.time()
        eval(model, data_test, voc_size, 0)
        print('test time: {}'.format(time.time() - tic))
        return

    model.to(device=device)
    print('parameters', get_n_params(model))
    # exit()
    optimizer = RMSprop(list(model.parameters()),
                        lr=args.lr,
                        weight_decay=args.weight_decay)

    # start iterations
    history = defaultdict(list)
    best_epoch, best_ja = 0, 0

    criterion = torch.nn.CrossEntropyLoss()
    EPOCH = 40
    for epoch in range(EPOCH):
        t = 0
        tic = time.time()
        print('\nepoch {} --------------------------'.format(epoch + 1))
        model.train()
        for step, input in enumerate(data_train):
            if len(input) < 2: continue
            loss = 0
            for adm_idx, adm in enumerate(input):
                if adm_idx == 0: continue

                seq_input = input[:adm_idx + 1]

                loss_bce_target = np.zeros((1, voc_size[2]))
                loss_bce_target[:, adm[2]] = 1
                loss_bce_target_last = np.zeros((1, voc_size[2]))
                loss_bce_target_last[:, input[adm_idx - 1][2]] = 1

                target_list = loss_bce_target - loss_bce_target_last
                target_list[target_list == -1] = 2
                result = model(seq_input)

                loss += criterion(result,
                                  torch.LongTensor(target_list[0]).to(device))

                # l2 = 0
                # for p in model.parameters():
                #     l2 = l2 + (p ** 2).sum()

            optimizer.zero_grad()
            loss.backward(retain_graph=True)
            optimizer.step()

            llprint('\rtraining step: {} / {}'.format(step, len(data_train)))

        print()
        tic2 = time.time()
        ddi_rate, ja, prauc, avg_p, avg_r, avg_f1, add, delete, avg_med = eval(
            model, data_eval, voc_size, epoch)
        print('training time: {}, test time: {}'.format(
            time.time() - tic,
            time.time() - tic2))

        history['ja'].append(ja)
        history['ddi_rate'].append(ddi_rate)
        history['avg_p'].append(avg_p)
        history['avg_r'].append(avg_r)
        history['avg_f1'].append(avg_f1)
        history['prauc'].append(prauc)
        history['add'].append(add)
        history['delete'].append(delete)
        history['med'].append(avg_med)

        if epoch >= 5:
            print(
                'ddi: {}, Med: {}, Ja: {}, F1: {}, Add: {}, Delete: {}'.format(
                    np.mean(history['ddi_rate'][-5:]),
                    np.mean(history['med'][-5:]), np.mean(history['ja'][-5:]),
                    np.mean(history['avg_f1'][-5:]),
                    np.mean(history['add'][-5:]),
                    np.mean(history['delete'][-5:])))

        torch.save(model.state_dict(), open(os.path.join('saved', args.model_name, \
            'Epoch_{}_JA_{:.4}_DDI_{:.4}.model'.format(epoch, ja, ddi_rate)), 'wb'))

        if epoch != 0 and best_ja < ja:
            best_epoch = epoch
            best_ja = ja

        print('best_epoch: {}'.format(best_epoch))

    dill.dump(
        history,
        open(
            os.path.join('saved', args.model_name,
                         'history_{}.pkl'.format(args.model_name)), 'wb'))
Example #3
0
def main():

    # load data
    data_path = '../data/output/records_final.pkl'
    voc_path = '../data/output/voc_final.pkl'
    device = torch.device('cuda:{}'.format(args.cuda))

    data = dill.load(open(data_path, 'rb'))
    voc = dill.load(open(voc_path, 'rb'))
    diag_voc, pro_voc, med_voc = voc['diag_voc'], voc['pro_voc'], voc[
        'med_voc']

    split_point = int(len(data) * 2 / 3)
    data_train = data[:split_point]
    eval_len = int(len(data[split_point:]) / 2)
    data_test = data[split_point:split_point + eval_len]
    data_eval = data[split_point + eval_len:]
    voc_size = (len(diag_voc.idx2word), len(pro_voc.idx2word),
                len(med_voc.idx2word))

    END_TOKEN = voc_size[2] + 1

    model = Leap(voc_size, device=device)
    # model.load_state_dict(torch.load(open(args.resume_path, 'rb')))

    if args.Test:
        model.load_state_dict(torch.load(open(args.resume_path, 'rb')))
        model.to(device=device)
        tic = time.time()
        result = []
        for _ in range(10):
            test_sample = np.random.choice(data_test,
                                           round(len(data_test) * 0.8),
                                           replace=True)
            ddi_rate, ja, prauc, avg_p, avg_r, avg_f1, avg_med = eval(
                model, test_sample, voc_size, 0)
            result.append([ddi_rate, ja, avg_f1, prauc, avg_med])

        result = np.array(result)
        mean = result.mean(axis=0)
        std = result.std(axis=0)

        outstring = ""
        for m, s in zip(mean, std):
            outstring += "{:.4f} $\pm$ {:.4f} & ".format(m, s)

        print(outstring)
        print('test time: {}'.format(time.time() - tic))
        return

    model.to(device=device)
    print('parameters', get_n_params(model))
    optimizer = Adam(model.parameters(), lr=args.lr)

    history = defaultdict(list)
    best_epoch, best_ja = 0, 0

    EPOCH = 50
    for epoch in range(EPOCH):
        tic = time.time()
        print('\nepoch {} --------------------------'.format(epoch + 1))

        model.train()
        for step, input in enumerate(data_train):
            for adm in input:

                loss_target = adm[2] + [END_TOKEN]
                output_logits = model(adm)
                loss = F.cross_entropy(
                    output_logits,
                    torch.LongTensor(loss_target).to(device))
                optimizer.zero_grad()
                loss.backward(retain_graph=True)
                optimizer.step()

            llprint('\rtraining step: {} / {}'.format(step, len(data_train)))

        print()
        tic2 = time.time()
        ddi_rate, ja, prauc, avg_p, avg_r, avg_f1, avg_med = eval(
            model, data_eval, voc_size, epoch)
        print('training time: {}, test time: {}'.format(
            time.time() - tic,
            time.time() - tic2))

        history['ja'].append(ja)
        history['ddi_rate'].append(ddi_rate)
        history['avg_p'].append(avg_p)
        history['avg_r'].append(avg_r)
        history['avg_f1'].append(avg_f1)
        history['prauc'].append(prauc)
        history['med'].append(avg_med)

        if epoch >= 5:
            print('ddi: {}, Med: {}, Ja: {}, F1: {}, PRAUC: {}'.format(
                np.mean(history['ddi_rate'][-5:]),
                np.mean(history['med'][-5:]), np.mean(history['ja'][-5:]),
                np.mean(history['avg_f1'][-5:]),
                np.mean(history['prauc'][-5:])))

        torch.save(model.state_dict(), open(os.path.join('saved', args.model_name, \
            'Epoch_{}_JA_{:.4}_DDI_{:.4}.model'.format(epoch, ja, ddi_rate)), 'wb'))

        if epoch != 0 and best_ja < ja:
            best_epoch = epoch
            best_ja = ja

        print('best_epoch: {}'.format(best_epoch))

        dill.dump(
            history,
            open(
                os.path.join('saved', args.model_name,
                             'history_{}.pkl'.format(args.model_name)), 'wb'))
Example #4
0
def main():
    if not os.path.exists(os.path.join("saved", model_name)):
        os.makedirs(os.path.join("saved", model_name))

    data_path = '../data/records_final.pkl'
    voc_path = '../data/voc_final.pkl'

    ehr_adj_path = '../data/ehr_adj_final.pkl'
    ddi_adj_path = '../data/ddi_A_final.pkl'
    device = torch.device('cuda:0')

    ehr_adj = dill.load(open(ehr_adj_path, 'rb'))
    ddi_adj = dill.load(open(ddi_adj_path, 'rb'))
    data = dill.load(open(data_path, 'rb'))
    voc = dill.load(open(voc_path, 'rb'))
    diag_voc, pro_voc, med_voc = voc['diag_voc'], voc['pro_voc'], voc[
        'med_voc']

    split_point = int(len(data) * 2 / 3)
    data_train = data[:split_point]
    eval_len = int(len(data[split_point:]) / 2)
    data_test = data[split_point:split_point + eval_len]
    data_eval = data[split_point + eval_len:]

    EPOCH = 40
    LR = 0.0002
    TEST = args.eval
    Neg_Loss = args.ddi
    DDI_IN_MEM = args.ddi
    TARGET_DDI = 0.05
    T = 0.5
    decay_weight = 0.85

    voc_size = (len(diag_voc.idx2word), len(pro_voc.idx2word),
                len(med_voc.idx2word))
    model = GAMENet(voc_size,
                    ehr_adj,
                    ddi_adj,
                    emb_dim=64,
                    device=device,
                    ddi_in_memory=DDI_IN_MEM)
    if TEST:
        model.load_state_dict(torch.load(open(resume_name, 'rb')))
    model.to(device=device)

    print('parameters', get_n_params(model))
    optimizer = Adam(list(model.parameters()), lr=LR)

    if TEST:
        eval(model, data_test, voc_size, 0)
    else:
        history = defaultdict(list)
        best_epoch = 0
        best_ja = 0
        for epoch in range(EPOCH):
            loss_record1 = []
            start_time = time.time()
            model.train()
            prediction_loss_cnt = 0
            neg_loss_cnt = 0
            for step, input in enumerate(data_train):
                for idx, adm in enumerate(input):
                    seq_input = input[:idx + 1]
                    loss1_target = np.zeros((1, voc_size[2]))
                    loss1_target[:, adm[2]] = 1
                    loss3_target = np.full((1, voc_size[2]), -1)
                    for idx, item in enumerate(adm[2]):
                        loss3_target[0][idx] = item

                    target_output1, batch_neg_loss = model(seq_input)

                    loss1 = F.binary_cross_entropy_with_logits(
                        target_output1,
                        torch.FloatTensor(loss1_target).to(device))
                    loss3 = F.multilabel_margin_loss(
                        F.sigmoid(target_output1),
                        torch.LongTensor(loss3_target).to(device))
                    if Neg_Loss:
                        target_output1 = F.sigmoid(
                            target_output1).detach().cpu().numpy()[0]
                        target_output1[target_output1 >= 0.5] = 1
                        target_output1[target_output1 < 0.5] = 0
                        y_label = np.where(target_output1 == 1)[0]
                        current_ddi_rate = ddi_rate_score([[y_label]])
                        if current_ddi_rate <= TARGET_DDI:
                            loss = 0.9 * loss1 + 0.01 * loss3
                            prediction_loss_cnt += 1
                        else:
                            rnd = np.exp((TARGET_DDI - current_ddi_rate) / T)
                            if np.random.rand(1) < rnd:
                                loss = batch_neg_loss
                                neg_loss_cnt += 1
                            else:
                                loss = 0.9 * loss1 + 0.01 * loss3
                                prediction_loss_cnt += 1
                    else:
                        loss = 0.9 * loss1 + 0.01 * loss3

                    optimizer.zero_grad()
                    loss.backward(retain_graph=True)
                    optimizer.step()

                    loss_record1.append(loss.item())

                llprint(
                    '\rTrain--Epoch: %d, Step: %d/%d, L_p cnt: %d, L_neg cnt: %d'
                    % (epoch, step, len(data_train), prediction_loss_cnt,
                       neg_loss_cnt))
            # annealing
            T *= decay_weight

            ddi_rate, ja, prauc, avg_p, avg_r, avg_f1 = eval(
                model, data_eval, voc_size, epoch)

            history['ja'].append(ja)
            history['ddi_rate'].append(ddi_rate)
            history['avg_p'].append(avg_p)
            history['avg_r'].append(avg_r)
            history['avg_f1'].append(avg_f1)
            history['prauc'].append(prauc)

            end_time = time.time()
            elapsed_time = (end_time - start_time) / 60
            llprint(
                '\tEpoch: %d, Loss: %.4f, One Epoch Time: %.2fm, Appro Left Time: %.2fh\n'
                % (epoch, np.mean(loss_record1), elapsed_time, elapsed_time *
                   (EPOCH - epoch - 1) / 60))

            torch.save(
                model.state_dict(),
                open(
                    os.path.join(
                        'saved', model_name,
                        'Epoch_%d_JA_%.4f_DDI_%.4f.model' %
                        (epoch, ja, ddi_rate)), 'wb'))
            print('')
            if epoch != 0 and best_ja < ja:
                best_epoch = epoch
                best_ja = ja

        dill.dump(history,
                  open(os.path.join('saved', model_name, 'history.pkl'), 'wb'))

        # test
        torch.save(
            model.state_dict(),
            open(os.path.join('saved', model_name, 'final.model'), 'wb'))

        print('best_epoch:', best_epoch)
Example #5
0
def main():

    data_path = '../data/output/records_final.pkl'
    voc_path = '../data/output/voc_final.pkl'

    ehr_adj_path = '../data/output/ehr_adj_final.pkl'
    ddi_adj_path = '../data/output/ddi_A_final.pkl'
    device = torch.device('cuda:{}'.format(args.cuda))

    ehr_adj = dill.load(open(ehr_adj_path, 'rb'))
    ddi_adj = dill.load(open(ddi_adj_path, 'rb'))
    data = dill.load(open(data_path, 'rb'))

    voc = dill.load(open(voc_path, 'rb'))
    diag_voc, pro_voc, med_voc = voc['diag_voc'], voc['pro_voc'], voc[
        'med_voc']

    # np.random.seed(2048)
    # np.random.shuffle(data)
    split_point = int(len(data) * 2 / 3)
    data_train = data[:split_point]
    eval_len = int(len(data[split_point:]) / 2)
    data_test = data[split_point:split_point + eval_len]
    data_eval = data[split_point + eval_len:]

    voc_size = (len(diag_voc.idx2word), len(pro_voc.idx2word),
                len(med_voc.idx2word))
    model = GAMENet(voc_size,
                    ehr_adj,
                    ddi_adj,
                    emb_dim=args.dim,
                    device=device,
                    ddi_in_memory=args.ddi)
    # model.load_state_dict(torch.load(open(args.resume_path, 'rb')))

    if args.Test:
        model.load_state_dict(torch.load(open(args.resume_path, 'rb')))
        model.to(device=device)
        tic = time.time()
        result = []
        for _ in range(10):
            test_sample = np.random.choice(data_test,
                                           round(len(data_test) * 0.8),
                                           replace=True)
            ddi_rate, ja, prauc, avg_p, avg_r, avg_f1, avg_med = eval(
                model, test_sample, voc_size, 0)
            result.append([ddi_rate, ja, avg_f1, prauc, avg_med])

        result = np.array(result)
        mean = result.mean(axis=0)
        std = result.std(axis=0)

        outstring = ""
        for m, s in zip(mean, std):
            outstring += "{:.4f} $\pm$ {:.4f} & ".format(m, s)

        print(outstring)
        print('test time: {}'.format(time.time() - tic))
        return

    model.to(device=device)
    print('parameters', get_n_params(model))
    optimizer = Adam(list(model.parameters()), lr=args.lr)

    history = defaultdict(list)
    best_epoch, best_ja = 0, 0

    EPOCH = 50
    for epoch in range(EPOCH):
        tic = time.time()
        print('\nepoch {} --------------------------'.format(epoch + 1))
        prediction_loss_cnt, neg_loss_cnt = 0, 0
        model.train()
        for step, input in enumerate(data_train):
            for idx, adm in enumerate(input):
                seq_input = input[:idx + 1]
                loss_bce_target = np.zeros((1, voc_size[2]))
                loss_bce_target[:, adm[2]] = 1

                loss_multi_target = np.full((1, voc_size[2]), -1)
                for idx, item in enumerate(adm[2]):
                    loss_multi_target[0][idx] = item

                target_output1, loss_ddi = model(seq_input)

                loss_bce = F.binary_cross_entropy_with_logits(
                    target_output1,
                    torch.FloatTensor(loss_bce_target).to(device))
                loss_multi = F.multilabel_margin_loss(
                    F.sigmoid(target_output1),
                    torch.LongTensor(loss_multi_target).to(device))
                if args.ddi:
                    target_output1 = F.sigmoid(
                        target_output1).detach().cpu().numpy()[0]
                    target_output1[target_output1 >= 0.5] = 1
                    target_output1[target_output1 < 0.5] = 0
                    y_label = np.where(target_output1 == 1)[0]
                    current_ddi_rate = ddi_rate_score(
                        [[y_label]], path='../data/output/ddi_A_final.pkl')
                    if current_ddi_rate <= args.target_ddi:
                        loss = 0.9 * loss_bce + 0.1 * loss_multi
                        prediction_loss_cnt += 1
                    else:
                        rnd = np.exp(
                            (args.target_ddi - current_ddi_rate) / args.T)
                        if np.random.rand(1) < rnd:
                            loss = loss_ddi
                            neg_loss_cnt += 1
                        else:
                            loss = 0.9 * loss_bce + 0.1 * loss_multi
                            prediction_loss_cnt += 1
                else:
                    loss = 0.9 * loss_bce + 0.1 * loss_multi

                optimizer.zero_grad()
                loss.backward(retain_graph=True)
                optimizer.step()

            llprint('\rtraining step: {} / {}'.format(step, len(data_train)))

        args.T *= args.decay_weight

        print()
        tic2 = time.time()
        ddi_rate, ja, prauc, avg_p, avg_r, avg_f1, avg_med = eval(
            model, data_eval, voc_size, epoch)
        print('training time: {}, test time: {}'.format(
            time.time() - tic,
            time.time() - tic2))

        history['ja'].append(ja)
        history['ddi_rate'].append(ddi_rate)
        history['avg_p'].append(avg_p)
        history['avg_r'].append(avg_r)
        history['avg_f1'].append(avg_f1)
        history['prauc'].append(prauc)
        history['med'].append(avg_med)

        if epoch >= 5:
            print('ddi: {}, Med: {}, Ja: {}, F1: {}, PRAUC: {}'.format(
                np.mean(history['ddi_rate'][-5:]),
                np.mean(history['med'][-5:]), np.mean(history['ja'][-5:]),
                np.mean(history['avg_f1'][-5:]),
                np.mean(history['prauc'][-5:])))

        torch.save(model.state_dict(), open(os.path.join('saved', args.model_name, \
            'Epoch_{}_JA_{:.4}_DDI_{:.4}.model'.format(epoch, ja, ddi_rate)), 'wb'))

        if epoch != 0 and best_ja < ja:
            best_epoch = epoch
            best_ja = ja

        print('best_epoch: {}'.format(best_epoch))

    dill.dump(
        history,
        open(
            os.path.join('saved', args.model_name,
                         'history_{}.pkl'.format(args.model_name)), 'wb'))
Example #6
0
def main():

    # load data
    data_path = '../data/output/records_final.pkl'
    voc_path = '../data/output/voc_final.pkl'

    ddi_adj_path = '../data/output/ddi_A_final.pkl'
    device = torch.device('cuda:{}'.format(args.cuda))

    ddi_adj = dill.load(open(ddi_adj_path, 'rb'))
    data = dill.load(open(data_path, 'rb'))

    voc = dill.load(open(voc_path, 'rb'))
    diag_voc, pro_voc, med_voc = voc['diag_voc'], voc['pro_voc'], voc[
        'med_voc']

    np.random.seed(1203)
    np.random.shuffle(data)

    split_point = int(len(data) * 3 / 5)
    data_train = data[:split_point]
    eval_len = int(len(data[split_point:]) / 2)
    data_test = data[split_point:split_point + eval_len]
    data_eval = data[split_point + eval_len:]

    voc_size = (len(diag_voc.idx2word), len(pro_voc.idx2word),
                len(med_voc.idx2word))

    model = MICRON(voc_size, ddi_adj, emb_dim=args.dim, device=device)
    # model.load_state_dict(torch.load(open(args.resume_path, 'rb')))

    if args.Test:
        model.load_state_dict(torch.load(open(args.resume_path, 'rb')))
        model.to(device=device)
        tic = time.time()
        label_list, prob_list = eval(model, data_eval, voc_size, 0, 1)

        threshold1, threshold2 = [], []
        for i in range(label_list.shape[1]):
            _, _, boundary = roc_curve(label_list[:, i],
                                       prob_list[:, i],
                                       pos_label=1)
            # boundary1 should be in [0.5, 0.9], boundary2 should be in [0.1, 0.5]
            threshold1.append(
                min(
                    0.9,
                    max(0.5, boundary[max(0,
                                          round(len(boundary) * 0.05) - 1)])))
            threshold2.append(
                max(
                    0.1,
                    min(
                        0.5, boundary[min(round(len(boundary) * 0.95),
                                          len(boundary) - 1)])))
        print(np.mean(threshold1), np.mean(threshold2))
        threshold1 = np.ones(voc_size[2]) * np.mean(threshold1)
        threshold2 = np.ones(voc_size[2]) * np.mean(threshold2)
        eval(model, data_test, voc_size, 0, 0, threshold1, threshold2)
        print('test time: {}'.format(time.time() - tic))

        return

    model.to(device=device)
    print('parameters', get_n_params(model))
    # exit()
    optimizer = RMSprop(list(model.parameters()),
                        lr=args.lr,
                        weight_decay=args.weight_decay)

    # start iterations
    history = defaultdict(list)
    best_epoch, best_ja = 0, 0

    weight_list = [[0.25, 0.25, 0.25, 0.25]]

    EPOCH = 40
    for epoch in range(EPOCH):
        t = 0
        tic = time.time()
        print('\nepoch {} --------------------------'.format(epoch + 1))

        sample_counter = 0
        mean_loss = np.array([0, 0, 0, 0])

        model.train()
        for step, input in enumerate(data_train):
            loss = 0
            if len(input) < 2: continue
            for adm_idx, adm in enumerate(input):
                if adm_idx == 0: continue
                # sample_counter += 1
                seq_input = input[:adm_idx + 1]

                loss_bce_target = np.zeros((1, voc_size[2]))
                loss_bce_target[:, adm[2]] = 1

                loss_bce_target_last = np.zeros((1, voc_size[2]))
                loss_bce_target_last[:, input[adm_idx - 1][2]] = 1

                loss_multi_target = np.full((1, voc_size[2]), -1)
                for idx, item in enumerate(adm[2]):
                    loss_multi_target[0][idx] = item

                loss_multi_target_last = np.full((1, voc_size[2]), -1)
                for idx, item in enumerate(input[adm_idx - 1][2]):
                    loss_multi_target_last[0][idx] = item

                result, result_last, _, loss_ddi, loss_rec = model(seq_input)

                loss_bce = 0.75 * F.binary_cross_entropy_with_logits(result, torch.FloatTensor(loss_bce_target).to(device)) + \
                    (1 - 0.75) * F.binary_cross_entropy_with_logits(result_last, torch.FloatTensor(loss_bce_target_last).to(device))
                loss_multi = 5e-2 * (0.75 * F.multilabel_margin_loss(F.sigmoid(result), torch.LongTensor(loss_multi_target).to(device)) + \
                    (1 - 0.75) * F.multilabel_margin_loss(F.sigmoid(result_last), torch.LongTensor(loss_multi_target_last).to(device)))

                y_pred_tmp = F.sigmoid(result).detach().cpu().numpy()[0]
                y_pred_tmp[y_pred_tmp >= 0.5] = 1
                y_pred_tmp[y_pred_tmp < 0.5] = 0
                y_label = np.where(y_pred_tmp == 1)[0]
                current_ddi_rate = ddi_rate_score(
                    [[y_label]], path='../data/output/ddi_A_final.pkl')

                # l2 = 0
                # for p in model.parameters():
                #     l2 = l2 + (p ** 2).sum()

                if sample_counter == 0:
                    lambda1, lambda2, lambda3, lambda4 = weight_list[-1]
                else:
                    current_loss = np.array([
                        loss_bce.detach().cpu().numpy(),
                        loss_multi.detach().cpu().numpy(),
                        loss_ddi.detach().cpu().numpy(),
                        loss_rec.detach().cpu().numpy()
                    ])
                    current_ratio = (current_loss -
                                     np.array(mean_loss)) / np.array(mean_loss)
                    instant_weight = np.exp(current_ratio) / sum(
                        np.exp(current_ratio))
                    lambda1, lambda2, lambda3, lambda4 = instant_weight * 0.75 + np.array(
                        weight_list[-1]) * 0.25
                    # update weight_list
                    weight_list.append([lambda1, lambda2, lambda3, lambda4])
                # update mean_loss
                mean_loss = (mean_loss * (sample_counter - 1) + np.array([loss_bce.detach().cpu().numpy(), \
                    loss_multi.detach().cpu().numpy(), loss_ddi.detach().cpu().numpy(), loss_rec.detach().cpu().numpy()])) / sample_counter
                # lambda1, lambda2, lambda3, lambda4 = weight_list[-1]
                if current_ddi_rate > 0.08:
                    loss += lambda1 * loss_bce + lambda2 * loss_multi + \
                                 lambda3 * loss_ddi +  lambda4 * loss_rec
                else:
                    loss += lambda1 * loss_bce + lambda2 * loss_multi + \
                                lambda4 * loss_rec

            optimizer.zero_grad()
            loss.backward(retain_graph=True)
            optimizer.step()

            llprint('\rtraining step: {} / {}'.format(step, len(data_train)))

        tic2 = time.time()
        ddi_rate, ja, prauc, avg_p, avg_r, avg_f1, add, delete, avg_med = eval(
            model, data_eval, voc_size, epoch)
        print('training time: {}, test time: {}'.format(
            time.time() - tic,
            time.time() - tic2))

        history['ja'].append(ja)
        history['ddi_rate'].append(ddi_rate)
        history['avg_p'].append(avg_p)
        history['avg_r'].append(avg_r)
        history['avg_f1'].append(avg_f1)
        history['prauc'].append(prauc)
        history['add'].append(add)
        history['delete'].append(delete)
        history['med'].append(avg_med)

        if epoch >= 5:
            print(
                'ddi: {}, Med: {}, Ja: {}, F1: {}, Add: {}, Delete: {}'.format(
                    np.mean(history['ddi_rate'][-5:]),
                    np.mean(history['med'][-5:]), np.mean(history['ja'][-5:]),
                    np.mean(history['avg_f1'][-5:]),
                    np.mean(history['add'][-5:]),
                    np.mean(history['delete'][-5:])))

        torch.save(model.state_dict(), open(os.path.join('saved', args.model_name, \
            'Epoch_{}_JA_{:.4}_DDI_{:.4}.model'.format(epoch, ja, ddi_rate)), 'wb'))

        if epoch != 0 and best_ja < ja:
            best_epoch = epoch
            best_ja = ja

        print('best_epoch: {}'.format(best_epoch))

    dill.dump(
        history,
        open(
            os.path.join('saved', args.model_name,
                         'history_{}.pkl'.format(args.model_name)), 'wb'))
Example #7
0
def main():

    # load data
    data_path = '../data/output/records_final.pkl'
    voc_path = '../data/output/voc_final.pkl'
    device = torch.device('cuda:{}'.format(args.cuda))

    data = dill.load(open(data_path, 'rb'))
    voc = dill.load(open(voc_path, 'rb'))
    diag_voc, pro_voc, med_voc = voc['diag_voc'], voc['pro_voc'], voc[
        'med_voc']

    np.random.seed(1203)
    np.random.shuffle(data)
    split_point = int(len(data) * 3 / 5)

    data_train = data[:split_point]
    eval_len = int(len(data[split_point:]) / 2)
    data_test = data[split_point:split_point + eval_len]
    data_eval = data[split_point + eval_len:]
    voc_size = (len(diag_voc.idx2word), len(pro_voc.idx2word),
                len(med_voc.idx2word))

    model = Retain(voc_size, device=device)
    # model.load_state_dict(torch.load(open(os.path.join("saved", args.model_name, args.resume_path), 'rb')))

    if args.Test:
        model.load_state_dict(
            torch.load(
                open(os.path.join("saved", args.model_name, args.resume_path),
                     'rb')))
        model.to(device=device)
        tic = time.time()
        eval(model, data_test, voc_size, 0)
        print('test time: {}'.format(time.time() - tic))
        return

    print('parameters', get_n_params(model))
    optimizer = Adam(model.parameters(), args.lr)
    model.to(device=device)

    history = defaultdict(list)
    best_epoch, best_ja = 0, 0

    EPOCH = 40
    for epoch in range(EPOCH):
        tic = time.time()
        print('\nepoch {} --------------------------'.format(epoch + 1))
        model.train()
        for step, input in enumerate(data_train):
            if len(input) < 2: continue
            loss = 0
            for i in range(1, len(input)):
                target = np.zeros((1, voc_size[2]))
                target[:, input[i][2]] = 1

                output_logits = model(input[:i])
                loss += F.binary_cross_entropy_with_logits(
                    output_logits,
                    torch.FloatTensor(target).to(device))

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            llprint('\rtraining step: {} / {}'.format(step, len(data_train)))

        print()
        tic2 = time.time()
        ddi_rate, ja, prauc, avg_p, avg_r, avg_f1, avg_add, avg_delete, avg_med = eval(
            model, data_eval, voc_size, epoch)
        print('training time: {}, test time: {}'.format(
            time.time() - tic,
            time.time() - tic2))

        history['ja'].append(ja)
        history['ddi_rate'].append(ddi_rate)
        history['avg_p'].append(avg_p)
        history['avg_r'].append(avg_r)
        history['avg_f1'].append(avg_f1)
        history['avg_add'].append(avg_add)
        history['avg_delete'].append(avg_delete)
        history['prauc'].append(prauc)
        history['med'].append(avg_med)

        if epoch >= 5:
            print(
                'ddi: {}, Med: {}, Ja: {}, F1: {}, Add: {}, Delete: {}'.format(
                    np.mean(history['ddi_rate'][-5:]),
                    np.mean(history['med'][-5:]), np.mean(history['ja'][-5:]),
                    np.mean(history['avg_f1'][-5:]),
                    np.mean(history['avg_add'][-5:]),
                    np.mean(history['avg_delete'][-5:]),
                    np.mean(history['prauc'][-5:])))

        torch.save(model.state_dict(), open(os.path.join('saved', args.model_name, \
            'Epoch_{}_JA_{:.4}_DDI_{:.4}.model'.format(epoch, ja, ddi_rate)), 'wb'))

        if epoch != 0 and best_ja < ja:
            best_epoch = epoch
            best_ja = ja

        print('best_epoch: {}'.format(best_epoch))

    dill.dump(
        history,
        open(
            os.path.join('saved', args.model_name,
                         'history_{}.pkl'.format(args.model_name)), 'wb'))
Example #8
0
def main():
    if not os.path.exists(os.path.join("saved", model_name)):
        os.makedirs(os.path.join("saved", model_name))

    data_path = '../../data/records_final.pkl'
    voc_path = '../../data/voc_final.pkl'
    device = torch.device('cuda:0')

    data = dill.load(open(data_path, 'rb'))
    voc = dill.load(open(voc_path, 'rb'))
    diag_voc, pro_voc, med_voc = voc['diag_voc'], voc['pro_voc'], voc[
        'med_voc']

    split_point = int(len(data) * 2 / 3)
    data_train = data[:split_point]
    eval_len = int(len(data[split_point:]) / 2)
    data_test = data[split_point:split_point + eval_len]
    data_eval = data[split_point + eval_len:]
    voc_size = (len(diag_voc.idx2word), len(pro_voc.idx2word),
                len(med_voc.idx2word))

    EPOCH = 30
    LR = 0.0002
    TEST = False
    END_TOKEN = voc_size[2] + 1

    model = Leap(voc_size, device=device)
    if TEST:
        model.load_state_dict(
            torch.load(
                open(os.path.join("saved", model_name, resume_name), 'rb')))
        # pass

    model.to(device=device)
    print('parameters', get_n_params(model))

    optimizer = Adam(model.parameters(), lr=LR)

    if TEST:
        eval(model, data_test, voc_size, 0)
    else:
        history = defaultdict(list)
        for epoch in range(EPOCH):
            loss_record = []
            start_time = time.time()
            model.train()
            for step, input in enumerate(data_train):
                for adm in input:
                    loss_target = adm[2] + [END_TOKEN]
                    output_logits = model(adm)
                    loss = F.cross_entropy(
                        output_logits,
                        torch.LongTensor(loss_target).to(device))

                    loss_record.append(loss.item())

                    optimizer.zero_grad()
                    loss.backward(retain_graph=True)
                    optimizer.step()

                llprint('\rTrain--Epoch: %d, Step: %d/%d' %
                        (epoch, step, len(data_train)))

            ddi_rate, ja, prauc, avg_p, avg_r, avg_f1 = eval(
                model, data_eval, voc_size, epoch)
            history['ja'].append(ja)
            history['ddi_rate'].append(ddi_rate)
            history['avg_p'].append(avg_p)
            history['avg_r'].append(avg_r)
            history['avg_f1'].append(avg_f1)
            history['prauc'].append(prauc)

            end_time = time.time()
            elapsed_time = (end_time - start_time) / 60
            llprint(
                '\tEpoch: %d, Loss1: %.4f, One Epoch Time: %.2fm, Appro Left Time: %.2fh\n'
                % (epoch, np.mean(loss_record), elapsed_time, elapsed_time *
                   (EPOCH - epoch - 1) / 60))

            torch.save(
                model.state_dict(),
                open(
                    os.path.join(
                        'saved', model_name,
                        'Epoch_%d_JA_%.4f_DDI_%.4f.model' %
                        (epoch, ja, ddi_rate)), 'wb'))
            print('')

        dill.dump(history,
                  open(os.path.join('saved', model_name, 'history.pkl'), 'wb'))
        # test
        torch.save(
            model.state_dict(),
            open(os.path.join('saved', model_name, 'final.model'), 'wb'))