def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] rnn_params = tf.get_collection_ref("rnn_params") if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( self._cell, self._cell.params_to_canonical, self._cell.canonical_to_params, rnn_params, base_variable_scope="Model/RNN") tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) self._cost = tf.get_collection_ref(util.with_prefix( self._name, "cost"))[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples(self._final_state, self._final_state_name, num_replicas)
def import_ops(self, config): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] rnn_params = tf.get_collection_ref("rnn_params") if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.CudnnLSTMSaveable( rnn_params, config.num_layers, config.hidden_size, config.hidden_size, scope="Model/RNN") tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) self._cost = tf.get_collection_ref(util.with_prefix( self._name, "cost"))[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples(self._final_state, self._final_state_name, num_replicas)
def import_ops(self, num_gpus=1): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] self._cost = tf.get_collection_ref(util.with_prefix( self._name, "cost"))[0] self._kl_loss = tf.get_collection_ref( util.with_prefix(self._name, "kl_div"))[0] self._input_data = tf.get_collection_ref( util.with_prefix(self._name, "input_data"))[0] self._output = tf.get_collection_ref( util.with_prefix(self._name, "output"))[0] self._targets = tf.get_collection_ref( util.with_prefix(self._name, "targets"))[0] num_replicas = num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples(self._final_state, self._final_state_name, num_replicas)
def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] self._params_size = tf.get_collection_ref("params_size")[0] if FLAGS.num_gpus: self._memory_use = tf.get_collection_ref("memory_use")[0] rnn_params = tf.get_collection_ref("rnn_params") # if self._cell and rnn_params: # params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( # self._cell, # self._cell.params_to_canonical, # self._cell.canonical_to_params, # rnn_params, # base_variable_scope="Model/RNN") # params_saveable = tf.contrib.cudnn_rnn.CudnnLSTMSaveable( # rnn_params, # self._cell.num_layers, # self._cell.num_units, # self._cell.input_size, # self._cell.input_mode, # self._cell.direction, # scope="Model/RNN") # tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) self._cost = tf.get_collection_ref(util.with_prefix( self._name, "cost"))[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples(self._final_state, self._final_state_name, num_replicas)
def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref('train_op')[0] self._lr = tf.get_collection_ref('lr')[0] self._new_lr = tf.get_collection_ref('new_lr')[0] self._lr_update = tf.get_collection_ref('lr_update')[0] rnn_params = tf.get_collection_ref('rnn_params') if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( self._cell, self._cell.params_to_canonical, self._cell.canonical_to_params, rnn_params, base_variable_scope='Model/RNN') tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) if self.model_type == 'test': self.logits = tf.get_collection_ref('logits')[0] self.y = tf.get_collection_ref('y')[0] self._cost = tf.get_collection_ref(util.with_prefix( self._name, 'cost'))[0] num_replicas = self.num_gpus if self._name == 'Train' else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples(self._final_state, self._final_state_name, num_replicas)
def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] rnn_params = tf.get_collection_ref("rnn_params") if self._cell and rnn_params: assert(False, \ "This branch spells trouble as the fn RNNParamsSaveable()" + \ " is not available from cudnn_rnn ") # params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( # # /home/rm/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/contrib/cudnn_rnn/python/layers/cudnn_rnn.py # does have the function RNNParamsSaveable() params_saveable = cudnn_rnn.RNNParamsSaveable( self._cell, self._cell.params_to_canonical, self._cell.canonical_to_params, rnn_params, base_variable_scope="Model/RNN") tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) self._cost = tf.get_collection_ref(util.with_prefix( self._name, "cost"))[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples(self._final_state, self._final_state_name, num_replicas)
def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] rnn_params = tf.get_collection_ref("rnn_params") if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.CudnnLSTMSaveable( rnn_params, self._cell.num_layers, self._cell.num_units, self._cell.input_size, self._cell.input_mode, self._cell.direction, scope="Model/RNN") self._cost = tf.get_collection_ref(util.with_prefix( self._name, "cost"))[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples(self._final_state, self._final_state_name, num_replicas)
def import_ops(self): """Imports ops from collections.""" self._padding = tf.get_collection_ref(util.with_prefix(self._name, 'clfs_padd'))[0] self._last_step = tf.get_collection_ref(util.with_prefix(self._name, 'last_step'))[0] if self._is_training: self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] self._new_val = tf.get_collection_ref("new_val")[0] self._update_epoch = tf.get_collection_ref("update_epoch") for key in self._exported_ops['train_ops']: self._train_ops[key] = tf.get_collection_ref(key)[0] for key in self._exported_ops['epoch_and_step']: if key == f'{self._name}/cur_epoch': self._cur_epoch = tf.get_collection_ref(key)[0] else: self._global_step = tf.get_collection_ref(key)[0] for key in self._exported_ops['losses']: self._losses[key.split('/')[1]] = tf.get_collection_ref(key)[0] for key in self._exported_ops['l2_losses']: self._l2_losses[key.split('/')[1]] = tf.get_collection_ref(key)[0] for key in self._exported_ops['predictions']: self._predictions[key.split('/')[1]] = tf.get_collection_ref(key)[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples( self._final_state, self._final_state_name, num_replicas)
def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0] self._final_state = util.import_state_tuples(self._final_state, self._final_state_name)
def import_ops(self, num_gpus = 1): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0] self._kl_loss = tf.get_collection_ref(util.with_prefix(self._name, "kl_div"))[0] self._input_data = tf.get_collection_ref(util.with_prefix(self._name, "input_data"))[0] self._output = tf.get_collection_ref(util.with_prefix(self._name, "output"))[0] self._targets = tf.get_collection_ref(util.with_prefix(self._name, "targets"))[0] num_replicas = num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples( self._final_state, self._final_state_name, num_replicas)
def import_ops(self): """Imports ops from collections.""" if self._is_training: self._train_op = tf.get_collection_ref("train_op")[0] self._lr = tf.get_collection_ref("lr")[0] self._new_lr = tf.get_collection_ref("new_lr")[0] self._lr_update = tf.get_collection_ref("lr_update")[0] rnn_params = tf.get_collection_ref("rnn_params") if self._cell and rnn_params: params_saveable = tf.contrib.cudnn_rnn.RNNParamsSaveable( self._cell, self._cell.params_to_canonical, self._cell.canonical_to_params, rnn_params, base_variable_scope="Model/RNN") tf.add_to_collection(tf.GraphKeys.SAVEABLE_OBJECTS, params_saveable) self._cost = tf.get_collection_ref(util.with_prefix(self._name, "cost"))[0] num_replicas = FLAGS.num_gpus if self._name == "Train" else 1 self._initial_state = util.import_state_tuples( self._initial_state, self._initial_state_name, num_replicas) self._final_state = util.import_state_tuples( self._final_state, self._final_state_name, num_replicas)
from __future__ import absolute_import