def main():
    import argparse
    parser = argparse.ArgumentParser(
        description="""Denoise measured field strength (H) curves.""",
        formatter_class=argparse.RawDescriptionHelpFormatter)

    # -------------------------------------------------
    # ungrouped meta options

    parser.add_argument('-v',
                        '--version',
                        action='version',
                        version=('%(prog)s ' + __version__))

    parser.add_argument(
        '-l',
        '--list',
        dest='listfiles',
        action='store_true',
        help='List available stress levels (measurement data files) and exit.')
    parser.set_defaults(listfiles=False)

    # -------------------------------------------------
    # data options

    group_data = parser.add_argument_group('data', 'Data file options.')

    group_data.add_argument(
        '-s',
        '--sigma',
        dest='sigma',
        default=0,
        type=int,
        metavar='x',
        help=
        'Stress level, selects the corresponding data file. (This expects only the number in MPa, leaving out the unit.) (default: %(default)s).'
    )

    group_data.add_argument(
        '-p',
        '--path',
        dest='path',
        default=".",
        type=str,
        metavar='my/directory/path',
        help=
        'Path where to look for measurement data files (default: current working directory).'
    )

    # -------------------------------------------------

    # http://parezcoydigo.wordpress.com/2012/08/04/from-argparse-to-dictionary-in-python-2-7/
    kwargs = vars(parser.parse_args())

    if kwargs["listfiles"]:
        util.listfiles(kwargs["path"])
        sys.exit(0)
    else:
        lam = scrub(kwargs["sigma"], kwargs["path"], show=True, verbose=True)
Example #2
0
def main(path):
    # get data files in specified directory
    #
    data_items = util.listfiles(path, verbose=False)

    for sigma, input_filename in data_items:
        output_filename = re.sub(r'\.mat$', r'_denoised.mat', input_filename)

        print("Scrubbing '%s' --> '%s'..." % (input_filename, output_filename))

        H = filter_H.scrub(sigma, path)
        B = filter_B.scrub(sigma, path)
        pol = filter_pol.scrub(sigma, path)
        lam = filter_magnetostriction.scrub(sigma, path)

        assert H.shape == B.shape == pol.shape == lam.shape

        A = np.empty((H.shape[0], 4), dtype=np.float64)
        A[:, 0] = H[:]
        A[:, 1] = B[:]
        A[:, 2] = pol[:]
        A[:, 3] = lam[:]

        scipy.io.savemat(output_filename, mdict={'A': A})

    print("All done.")
Example #3
0
def runthreading():
    pool = ThreadPoolExecutor(1)
    jpgname = listfiles(path, "jpg")
    for item in jpgname:
        # 识别过的就不再识别了
        if len(item) > 30:
            pool.submit(main, item)
Example #4
0
File: iv.py Project: snells/pyiv
 def filltree(self,path):
     self.currentfiles.clear()
     lst = os.listdir(self.dir)
     files = util.listfiles(path)
     dirs = util.listdirs(path)
     counter = 0
     for p in dirs:
         self.currentfiles.append([p + "/"])
         counter += 1
     for p in files:
         self.currentfiles.append([p])
         counter += 1
     self.len = len(lst)
def main(path):
    # get list of raw data files in specified directory
    #
    data_items = util.listfiles(path, verbose=False)

    for sigma,input_filename in data_items:
#    for dummy,input_filename in data_items:
        if sigma != 0:  # XXX DEBUG
            continue

        input_filename  = re.sub( r'\.mat$', r'_denoised.mat', input_filename )      # denoised data files
        output_filename = re.sub( r'\.mat$', r'_singlevalued.mat', input_filename )

        print( "Single-valuizing '%s' --> '%s'..." % (input_filename, output_filename) )

        try:
            data = scipy.io.loadmat(input_filename)
        except FileNotFoundError:
            import sys
            print( "Data file named '%s' not found, exiting (use --list to see available data files)" % (input_filename), file=sys.stderr )
            sys.exit(1)

        A    = data["A"]

        H    = A[:,0]  # Field strength H (A/m)
        B    = A[:,1]  # Flux density B (T)
        pol  = A[:,2]  # magnetic polarization J = B - mu0*H
        lam  = A[:,3]  # Magnetostriction lambda (ppm)

        assert H.shape == B.shape == pol.shape == lam.shape

#        # de-hysterize
#        xx,yy = fit_1d_weighted_average_localr(B,H)
#
#        # symmetrize w.r.t. B = 0
#        #
#        # we average the positive and negative parts.
#        #
#        imid = yy.shape[0]//2
#        ymid = yy[imid]
##        tmp = 0.5 * ((ymid - yy[imid-1::-1]) + (yy[imid+1:] - ymid))
#        tmp = 0.5 * (yy[imid+1:] - yy[imid-1::-1])  # equivalent
#        yy2 = np.empty_like(yy)
#        yy2[imid-1::-1] = ymid - tmp
#        yy2[imid+1:]    = ymid + tmp
#        yy2[imid]       = ymid
#
#        # DEBUG TEST - swap pos/neg parts
#        tmp_p = yy[imid+1:] - ymid
#        tmp_n = ymid - yy[imid-1::-1]
#        yy3 = np.empty_like(yy)
#        yy3[imid-1::-1] = ymid - tmp_p
#        yy3[imid+1:]    = ymid + tmp_n
#        yy3[imid]       = ymid

#        xx,yy = fit_1d_doeverything(B,H)
#        xx,yy = take_positive_half(xx, yy)

        xout = []
        yout = []
        xdata = [B, pol, H]
        ydata = [H, H, lam]
        xlabels = [r"$B$", r"$pol$", r"$H$"]
        ylabels = [r"$H$", r"$H$",   r"$\lambda$"]
        deoffsetters = [_deoffset_rawdata, _deoffset_rawdata, _deoffset_lam_data]
        fs      = [fit_1d_doeverything, fit_1d_doeverything, fit_1d_doeverything_for_lam]
        for xx,yy,f in zip(xdata,ydata,fs):
            xx2,yy2 = f(xx,yy)
            xx2,yy2 = take_positive_half(xx2,yy2)
            xout.append(xx2)
            yout.append(yy2)

#        plt.figure(1, figsize=(9,6))
#        plt.clf()
#        x,y = _deoffset_rawdata(B,H)
#        plt.plot(x,  y,   color='#d0d0d0', linestyle='solid')
#        plt.plot(xx, yy,  color='#909090', linestyle='solid')
#        plt.plot(xx, yy3, color='#909090', linestyle='dashed')  # DEBUG: pos/neg parts swapped
#        plt.plot(xx, yy2, color='k',       linestyle='solid')
#        plt.xlabel(r"$B$")
#        plt.ylabel(r"$H$")

        plt.figure(1, figsize=(14,6))
        plt.clf()
        nplots = len(ydata)
        for i,deof,xx_raw,xx_filt,xlabel,yy_raw,yy_filt,ylabel in \
                   zip(range(nplots), deoffsetters, xdata, xout, xlabels, ydata, yout, ylabels):
            ax = plt.subplot(1,nplots, i+1)
            x,y= deof(xx_raw,yy_raw)
            ax.plot(x,       y,        color='#d0d0d0', linestyle='solid')
            ax.plot(xx_filt, yy_filt,  color='#909090', linestyle='solid')
            ax.axis( [np.min(xx_filt), np.max(xx_filt), np.min(yy_filt), np.max(yy_filt)] )
            axis_marginize(ax, 0.02, 0.02)
            ax.grid(b=True, which='both')
            ax.set_title(r"%s(%s)" % (ylabel, xlabel))

        break

        # We have no guarantees that x starts from 0. Fix this.
        #
        tol = 1e-8
        if xout[0][0] < tol:
            xout[0][0] = 0
        if xout[1][0] < tol:
            xout[1][0] = 0

        # HACK: the lambda curve is fitted with the axes swapped.
        if yout[2][0] < tol:
            yout[2][0] = 0
        else:
            raise ValueError("something went wrong, lambda curve does not start from zero (got %g)" % (yout[2][0]))


        # Clip data to the smallest common max(H)
        #
        xs = [xout[0], xout[1], yout[2]]
        ys = [yout[0], yout[1], xout[2]]
        fs = []
        max_minx = -np.inf
        min_maxx = +np.inf
        for x,y in zip(xs,ys):
            min_maxx = min(np.max(x), min_maxx)
            max_minx = max(np.min(x), max_minx)
            fs.append( scipy.interpolate.interp1d(x,y) )

        # Interpolate to a common grid on the H axis
        #
        xx = np.linspace(0, min_maxx, 10001)
        yout2 = []
        for f in fs:
            yout2.append( f(xx) )


        # Save.
        #
        A = np.empty( (xx.shape[0],4), dtype=np.float64 )
        A[:,0] = xx
        A[:,1] = yout2[0]
        A[:,2] = yout2[1]
        A[:,3] = yout2[2]
        scipy.io.savemat( output_filename, mdict={ 'A' : A } )

    print( "All done." )
#!/usr/bin/python3.4
# -*- coding: utf-8 -*-

# 本脚本为切割图片变成训练样本
from PIL import Image
import time
import random
import os

from util import listfiles

if __name__ == '__main__':
    path = "../jpg/img/"
    os.mkdir("../jpg/letter")
    jpgname = listfiles(path, "jpg")
    for item in jpgname:
        try:
            jpgpath = item
            im = Image.open(jpgpath)

            # jpg不是最低像素,gif才是,所以要转换像素
            im = im.convert("P")

            # 打印像素直方图
            his = im.histogram()

            values = {}
            for i in range(0, 256):
                values[i] = his[i]

            # 排序,x:x[1]是按照括号内第二个字段进行排序,x:x[0]是按照第一个字段
Example #7
0
if __name__ == '__main__':
    numset = ['0','1','2','3','4','5','6','7','8','9']
    symbol_set = []
    iconset = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k',
               'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']

    imageset = []
    for letter in iconset:
        for img in os.listdir('../iconset1/%s/' % (letter)):
            temp = []
            if img != "Thumbs.db" and img != ".DS_Store":
                temp.append(buildvector(Image.open("../iconset1/%s/%s" % (letter, img))))
            imageset.append({letter: temp})

    path = "../jpg/letter/"
    jpgname = listfiles(path, "gif")
    # ../jpg/letter/20161210145303813.gif
    for item in jpgname:
        print(item)
        try:
            # 加载训练集
            v = VectorCompare()

            guess = []
            # 这样子写是为了close文件
            # 不然报错:[WinError 32] 另一个程序正在使用此文件,进程无法访问。: '../jpg/letter/201612101452081010.gif'
            im3 = Image.open(item)

            # 将切割得到的验证码小片段与每个训练片段进行比较
            for image in imageset:
                for x, y in image.items():