Example #1
0
def build_MCMC_cov_nbar_xi_gmf(Mr=21, b_normal=0.25):
    ''' Build covariance matrix used in MCMC for the full nbar, xi, gmf data vector
    using realisations of galaxy mocks for "data" HOD parameters in the 
    halos from the other subvolumes (subvolume 1 to subvolume 125) of
    the simulation. Covariance matrices for different sets of observables
    can be extracted from the full covariance matrix by slicing through 
    the indices. 

    '''
    nbars = []
    xir = []
    gmfs = []

    thr = -1. * np.float(Mr)
    model = PrebuiltHodModelFactory('zheng07', threshold=thr)
    halocat = CachedHaloCatalog(simname='multidark',
                                redshift=0,
                                halo_finder='rockstar')
    ###model.new_haloprop_func_dict = {'sim_subvol': util.mk_id_column}

    #some settings for tpcf calculations
    rbins = xi_binedges()
    rmax = rbins.max()
    approx_cell1_size = [rmax, rmax, rmax]
    approx_cellran_size = [rmax, rmax, rmax]

    #load randoms and RRs

    randoms = data_random(box='md_sub')
    RR = data_RR(box='md_sub')
    NR = len(randoms)

    for i in xrange(1, 125):
        print 'mock#', i

        # populate the mock subvolume
        ###mocksubvol = lambda x: util.mask_func(x, i)
        ###model.populate_mock(halocat,
        ###                    masking_function=mocksubvol,
        ###                    enforce_PBC=False)
        model.populate_mock(halocat)
        # returning the positions of galaxies in the entire volume
        pos = three_dim_pos_bundle(model.mock.galaxy_table, 'x', 'y', 'z')
        # masking out the galaxies outside the subvolume i
        pos = util.mask_galaxy_table(pos, i)
        # calculate nbar
        print "shape of pos", pos.shape
        nbars.append(len(pos) / 200**3.)
        # translate the positions of randoms to the new subbox
        xi0, yi0, zi0 = util.random_shifter(i)
        temp_randoms = randoms.copy()
        temp_randoms[:, 0] += xi0
        temp_randoms[:, 1] += yi0
        temp_randoms[:, 2] += zi0
        #calculate xi(r)
        xi = tpcf(pos,
                  rbins,
                  pos,
                  randoms=temp_randoms,
                  period=None,
                  max_sample_size=int(3e5),
                  estimator='Natural',
                  approx_cell1_size=approx_cell1_size,
                  approx_cellran_size=approx_cellran_size,
                  RR_precomputed=RR,
                  NR_precomputed=NR)
        xir.append(xi)
        # calculate gmf

        nbar = len(pos) / 200**3.
        b = b_normal * (nbar)**(-1. / 3)
        groups = pyfof.friends_of_friends(pos, b)
        w = np.array([len(x) for x in groups])
        gbins = gmf_bins()
        gmf = np.histogram(w, gbins)[0] / 200.**3.
        gmfs.append(gmf)

    # save nbar variance
    nbar_var = np.var(nbars, axis=0, ddof=1)
    nbar_file = ''.join([util.obvs_dir(), 'nbar_var.Mr', str(Mr), '.dat'])
    np.savetxt(nbar_file, [nbar_var])

    # write full covariance matrix of various combinations of the data
    # and invert for the likelihood evaluations

    # --- covariance for all three ---
    fulldatarr = np.hstack(
        (np.array(nbars).reshape(len(nbars),
                                 1), np.array(xir), np.array(gmfs)))
    fullcov = np.cov(fulldatarr.T)
    fullcorr = np.corrcoef(fulldatarr.T)

    # and save the covariance matrix
    nopoisson_file = ''.join([
        util.obvs_dir(), 'MCMC.nbar_xi_gmf_cov', '.no_poisson', '.Mr',
        str(Mr), '.bnorm',
        str(round(b_normal, 2)), '.dat'
    ])
    np.savetxt(nopoisson_file, fullcov)
    return None
Example #2
0
def build_nbar_xi_gmf(Mr=21, b_normal=0.25):
    ''' Build data vector [nbar, xi, gmf] and save to file 
    This data vector is built from the zeroth slice of the multidark
    The other slices will be used for building the covariance matrix.

    Parameters
    ----------
    Mr : (int) 
        Absolute magnitude cut off M_r. Default M_r = -21.

    b_normal : (float) 
        FoF Linking length
    '''
    thr = -1. * np.float(Mr)
    model = PrebuiltHodModelFactory('zheng07', threshold=thr)
    halocat = CachedHaloCatalog(simname='multidark',
                                redshift=0,
                                halo_finder='rockstar')
    ####model.new_haloprop_func_dict = {'sim_subvol': util.mk_id_column}

    ####datsubvol = lambda x: util.mask_func(x, 0)
    ####model.populate_mock(halocat, masking_function=datsubvol, enforce_PBC=False)
    model.populate_mock(halocat)

    #all the things necessary for tpcf calculation
    pos = three_dim_pos_bundle(model.mock.galaxy_table, 'x', 'y', 'z')
    #masking the galaxies outside the subvolume 0
    pos = util.mask_galaxy_table(pos, 0)
    rbins = xi_binedges()
    rmax = rbins.max()
    approx_cell1_size = [rmax, rmax, rmax]
    approx_cellran_size = [rmax, rmax, rmax]

    #compute number density
    nbar = len(pos) / 200**3.

    # load MD subvolume randoms and RRs
    randoms = data_random(box='md_sub')
    RR = data_RR(box='md_sub')
    NR = len(randoms)

    #compue tpcf with Natural estimator
    data_xir = tpcf(pos,
                    rbins,
                    pos,
                    randoms=randoms,
                    period=None,
                    max_sample_size=int(2e5),
                    estimator='Natural',
                    approx_cell1_size=approx_cell1_size,
                    approx_cellran_size=approx_cellran_size,
                    RR_precomputed=RR,
                    NR_precomputed=NR)

    fullvec = np.append(nbar, data_xir)

    #compute gmf
    b = b_normal * (nbar)**(-1. / 3)
    groups = pyfof.friends_of_friends(pos, b)
    w = np.array([len(x) for x in groups])
    gbins = gmf_bins()
    gmf = np.histogram(w, gbins)[0] / (200.**3.)
    fullvec = np.append(fullvec, gmf)

    output_file = data_file(Mr=Mr, b_normal=b_normal)
    np.savetxt(output_file, fullvec)
    return None
Example #3
0
    def _sum_stat(self, theta, prior_range=None, observables=['nbar', 'gmf']):
        '''
        Given theta, sum_stat calculates the observables from our forward model

        Parameters
        ----------
        theta : (self explanatory)
        prior_range : If specified, checks to make sure that theta is within the prior range.
        '''
        self.model.param_dict['logM0'] = theta[0]
        self.model.param_dict['sigma_logM'] = np.exp(theta[1])
        self.model.param_dict['logMmin'] = theta[2]
        self.model.param_dict['alpha'] = theta[3]
        self.model.param_dict['logM1'] = theta[4]

        rbins = xi_binedges()
        rmax = rbins.max()
        period = None
        approx_cell1_size = [rmax, rmax, rmax]
        approx_cellran_size = [rmax, rmax, rmax]

        if prior_range is None:
            rint = np.random.randint(1, 125)
            ####simsubvol = lambda x: util.mask_func(x, rint)
            ####self.model.populate_mock(self.halocat,
            ####                masking_function=simsubvol,
            ####                enforce_PBC=False)
            self.model.populate_mock(self.halocat)

            pos = three_dim_pos_bundle(self.model.mock.galaxy_table, 'x', 'y',
                                       'z')
            pos = util.mask_galaxy_table(pos, rint)

            xi, yi, zi = util.random_shifter(rint)
            temp_randoms = self.randoms.copy()
            temp_randoms[:, 0] += xi
            temp_randoms[:, 1] += yi
            temp_randoms[:, 2] += zi

            obvs = []
            for obv in observables:
                if obv == 'nbar':
                    obvs.append(len(pos) /
                                200**3.)  # nbar of the galaxy catalog
                elif obv == 'gmf':
                    #compute group richness
                    nbar = len(pos) / 200**3.
                    b = self.b_normal * (nbar)**(-1. / 3)
                    groups = pyfof.friends_of_friends(pos, b)
                    w = np.array([len(x) for x in groups])
                    gbins = data_gmf_bins()
                    gmf = np.histogram(w, gbins)[0] / (200.**3.)
                    obvs.append(gmf)
                elif obv == 'xi':
                    greek_xi = tpcf(pos,
                                    rbins,
                                    pos,
                                    randoms=temp_randoms,
                                    period=period,
                                    max_sample_size=int(1e5),
                                    estimator='Natural',
                                    approx_cell1_size=approx_cell1_size,
                                    approx_cellran_size=approx_cellran_size,
                                    RR_precomputed=self.RR,
                                    NR_precomputed=self.NR)

                    obvs.append(greek_xi)
                else:
                    raise NotImplementedError(
                        'Only nbar 2pcf, gmf implemented so far')

            return obvs

        else:
            if np.all((prior_range[:, 0] < theta)
                      & (theta < prior_range[:, 1])):
                # if all theta_i is within prior range ...
                try:
                    rint = np.random.randint(1, 125)
                    simsubvol = lambda x: util.mask_func(x, rint)
                    self.model.populate_mock(self.halocat,
                                             masking_function=simsubvol,
                                             enforce_PBC=False)

                    pos = three_dim_pos_bundle(self.model.mock.galaxy_table,
                                               'x', 'y', 'z')

                    xi, yi, zi = util.random_shifter(rint)
                    temp_randoms = self.randoms.copy()
                    temp_randoms[:, 0] += xi
                    temp_randoms[:, 1] += yi
                    temp_randoms[:, 2] += zi
                    obvs = []

                    for obv in observables:
                        if obv == 'nbar':
                            obvs.append(len(pos) /
                                        200**3.)  # nbar of the galaxy catalog
                        elif obv == 'gmf':
                            nbar = len(pos) / 200**3.
                            b = self.b_normal * (nbar)**(-1. / 3)
                            groups = pyfof.friends_of_friends(pos, b)
                            w = np.array([len(x) for x in groups])
                            gbins = data_gmf_bins()
                            gmf = np.histogram(w, gbins)[0] / (200.**3.)
                            obvs.append(gmf)
                        elif obv == 'xi':
                            greek_xi = tpcf(
                                pos,
                                rbins,
                                pos,
                                randoms=temp_randoms,
                                period=period,
                                max_sample_size=int(2e5),
                                estimator='Natural',
                                approx_cell1_size=approx_cell1_size,
                                approx_cellran_size=approx_cellran_size,
                                RR_precomputed=self.RR,
                                NR_precomputed=self.NR)

                            obvs.append(greek_xi)
                        else:
                            raise NotImplementedError(
                                'Only nbar, tpcf, and gmf are implemented so far'
                            )

                    return obvs

                except ValueError:

                    obvs = []
                    for obv in observables:
                        if obv == 'nbar':
                            obvs.append(10.)
                        elif obv == 'gmf':
                            bins = data_gmf_bins()
                            obvs.append(np.ones_like(bins)[:-1] * 1000.)
                        elif obv == 'xi':
                            obvs.append(np.zeros(len(xi_binedges()[:-1])))
                    return obvs
            else:
                obvs = []
                for obv in observables:
                    if obv == 'nbar':
                        obvs.append(10.)
                    elif obv == 'gmf':
                        bins = data_gmf_bins()
                        obvs.append(np.ones_like(bins)[:-1] * 1000.)
                    elif obv == 'xi':
                        obvs.append(np.zeros(len(xi_binedges()[:-1])))
                return obvs
Example #4
0
def build_MCMC_cov_nbar_xi_gmf(Mr=21, b_normal=0.25):
    ''' Build covariance matrix used in MCMC for the full nbar, xi, gmf data vector
    using realisations of galaxy mocks for "data" HOD parameters in the 
    halos from the other subvolumes (subvolume 1 to subvolume 125) of
    the simulation. Covariance matrices for different sets of observables
    can be extracted from the full covariance matrix by slicing through 
    the indices. 

    '''
    nbars = []
    xir = []
    gmfs = []

    thr = -1. * np.float(Mr)
    model = PrebuiltHodModelFactory('zheng07', threshold=thr)
    halocat = CachedHaloCatalog(simname = 'multidark', redshift = 0, halo_finder = 'rockstar')
    ###model.new_haloprop_func_dict = {'sim_subvol': util.mk_id_column}
    
    #some settings for tpcf calculations
    rbins = xi_binedges()
    rmax = rbins.max()
    approx_cell1_size = [rmax , rmax , rmax]
    approx_cellran_size = [rmax , rmax , rmax]
    
    #load randoms and RRs
    
    randoms = data_random(box='md_sub')
    RR = data_RR(box='md_sub')
    NR = len(randoms)

    for i in xrange(1,125):
        print 'mock#', i

        # populate the mock subvolume
        ###mocksubvol = lambda x: util.mask_func(x, i)
        ###model.populate_mock(halocat,
        ###                    masking_function=mocksubvol,
        ###                    enforce_PBC=False)
        model.populate_mock(halocat)
        # returning the positions of galaxies in the entire volume
        pos = three_dim_pos_bundle(model.mock.galaxy_table, 'x', 'y', 'z')
        # masking out the galaxies outside the subvolume i
        pos = util.mask_galaxy_table(pos , i)
        # calculate nbar
        print "shape of pos" , pos.shape 
        nbars.append(len(pos) / 200**3.)
        # translate the positions of randoms to the new subbox
        xi0 , yi0 , zi0 = util.random_shifter(i)
        temp_randoms = randoms.copy()
        temp_randoms[:,0] += xi0
        temp_randoms[:,1] += yi0
        temp_randoms[:,2] += zi0
        #calculate xi(r)        
        xi=tpcf(
             pos, rbins, pos, 
             randoms=temp_randoms, period=None, 
             max_sample_size=int(3e5), estimator='Natural', 
             approx_cell1_size=approx_cell1_size, 
             approx_cellran_size=approx_cellran_size,
             RR_precomputed = RR,
	     NR_precomputed = NR)
        xir.append(xi)
        # calculate gmf

        nbar = len(pos) / 200**3.
        b = b_normal * (nbar)**(-1./3) 
        groups = pyfof.friends_of_friends(pos , b)
    	w = np.array([len(x) for x in groups])
    	gbins = gmf_bins()
    	gmf = np.histogram(w , gbins)[0] / 200.**3.
        gmfs.append(gmf)

    # save nbar variance
    nbar_var = np.var(nbars, axis=0, ddof=1)
    nbar_file = ''.join([util.obvs_dir(), 'nbar_var.Mr', str(Mr), '.dat'])
    np.savetxt(nbar_file, [nbar_var])

    # write full covariance matrix of various combinations of the data
    # and invert for the likelihood evaluations

    # --- covariance for all three ---
    fulldatarr = np.hstack((np.array(nbars).reshape(len(nbars), 1),
                            np.array(xir),
                            np.array(gmfs)))
    fullcov = np.cov(fulldatarr.T)
    fullcorr = np.corrcoef(fulldatarr.T)

    # and save the covariance matrix
    nopoisson_file = ''.join([util.obvs_dir(),
        'MCMC.nbar_xi_gmf_cov', '.no_poisson', '.Mr', str(Mr), '.bnorm', str(round(b_normal,2)), '.dat'])
    np.savetxt(nopoisson_file, fullcov)
    return None
Example #5
0
def build_nbar_xi_gmf(Mr=21, b_normal=0.25):
    ''' Build data vector [nbar, xi, gmf] and save to file 
    This data vector is built from the zeroth slice of the multidark
    The other slices will be used for building the covariance matrix.

    Parameters
    ----------
    Mr : (int) 
        Absolute magnitude cut off M_r. Default M_r = -21.

    b_normal : (float) 
        FoF Linking length
    '''
    thr = -1. * np.float(Mr)
    model = PrebuiltHodModelFactory('zheng07', threshold=thr)
    halocat = CachedHaloCatalog(simname = 'multidark', redshift = 0, halo_finder = 'rockstar')
    ####model.new_haloprop_func_dict = {'sim_subvol': util.mk_id_column}

    ####datsubvol = lambda x: util.mask_func(x, 0)
    ####model.populate_mock(halocat, masking_function=datsubvol, enforce_PBC=False)
    model.populate_mock(halocat)
    
    #all the things necessary for tpcf calculation
    pos = three_dim_pos_bundle(model.mock.galaxy_table, 'x', 'y', 'z')
    #masking the galaxies outside the subvolume 0
    pos = util.mask_galaxy_table(pos , 0)
    rbins = xi_binedges()
    rmax = rbins.max()
    approx_cell1_size = [rmax , rmax , rmax]
    approx_cellran_size = [rmax , rmax , rmax]

    #compute number density    
    nbar = len(pos) / 200**3.
    
    # load MD subvolume randoms and RRs
    randoms = data_random(box='md_sub')
    RR = data_RR(box='md_sub')
    NR = len(randoms)
 
    #compue tpcf with Natural estimator
    data_xir = tpcf(
                 pos, rbins, pos, 
                 randoms=randoms, period=None, 
                 max_sample_size=int(2e5), estimator='Natural', 
                 approx_cell1_size=approx_cell1_size, 
                 approx_cellran_size=approx_cellran_size, 
                 RR_precomputed=RR, 
                 NR_precomputed=NR)

    fullvec = np.append(nbar, data_xir)
    
    #compute gmf
    b = b_normal * (nbar)**(-1./3) 
    groups = pyfof.friends_of_friends(pos , b)
    w = np.array([len(x) for x in groups])
    gbins = gmf_bins()
    gmf = np.histogram(w , gbins)[0] / (200.**3.)
    fullvec = np.append(fullvec, gmf)

    output_file = data_file(Mr=Mr, b_normal=b_normal)
    np.savetxt(output_file, fullvec)
    return None
Example #6
0
    def _sum_stat(self, theta, prior_range=None, observables=['nbar', 'gmf']):
        '''
        Given theta, sum_stat calculates the observables from our forward model

        Parameters
        ----------
        theta : (self explanatory)
        prior_range : If specified, checks to make sure that theta is within the prior range.
        '''
        self.model.param_dict['logM0'] = theta[0]
        self.model.param_dict['sigma_logM'] = np.exp(theta[1])
        self.model.param_dict['logMmin'] = theta[2]
        self.model.param_dict['alpha'] = theta[3]
        self.model.param_dict['logM1'] = theta[4]

        rbins = xi_binedges()
        rmax = rbins.max()
        period = None
        approx_cell1_size = [rmax , rmax , rmax]
        approx_cellran_size = [rmax , rmax , rmax]

        if prior_range is None:
            rint = np.random.randint(1, 125)
            ####simsubvol = lambda x: util.mask_func(x, rint)
            ####self.model.populate_mock(self.halocat,
            ####                masking_function=simsubvol,
            ####                enforce_PBC=False)
            self.model.populate_mock(self.halocat)
                        
            pos =three_dim_pos_bundle(self.model.mock.galaxy_table, 'x', 'y', 'z')
            pos = util.mask_galaxy_table(pos , rint) 

            xi , yi , zi = util.random_shifter(rint)
            temp_randoms = self.randoms.copy()
            temp_randoms[:,0] += xi
            temp_randoms[:,1] += yi
            temp_randoms[:,2] += zi

            obvs = []
            for obv in observables:
                if obv == 'nbar':
                    obvs.append(len(pos) / 200**3.)       # nbar of the galaxy catalog
                elif obv == 'gmf':
                    #compute group richness 
                    nbar = len(pos) / 200**3.
    		    b = self.b_normal * (nbar)**(-1./3) 
    		    groups = pyfof.friends_of_friends(pos , b)
    		    w = np.array([len(x) for x in groups])
    		    gbins = data_gmf_bins()
    		    gmf = np.histogram(w , gbins)[0] / (200.**3.)
                    obvs.append(gmf)   
                elif obv == 'xi':
                    greek_xi = tpcf(
                        pos, rbins, pos, 
                        randoms=temp_randoms, period = period, 
                        max_sample_size=int(1e5), estimator='Natural', 
                        approx_cell1_size=approx_cell1_size, 
                        approx_cellran_size=approx_cellran_size,
                        RR_precomputed = self.RR,
	                NR_precomputed = self.NR)

                    obvs.append(greek_xi)
                else:
                    raise NotImplementedError('Only nbar 2pcf, gmf implemented so far')

            return obvs

        else:
            if np.all((prior_range[:,0] < theta) & (theta < prior_range[:,1])):
                # if all theta_i is within prior range ...
                try:
                    rint = np.random.randint(1, 125)
                    simsubvol = lambda x: util.mask_func(x, rint)
                    self.model.populate_mock(self.halocat,
                                masking_function=simsubvol,
                                enforce_PBC=False)
           
                    pos =three_dim_pos_bundle(self.model.mock.galaxy_table, 'x', 'y', 'z')
                    #imposing mask on the galaxy table
                    pos = util.mask_galaxy_table(pos , rint) 
            	    xi , yi , zi = util.random_shifter(rint)
            	    temp_randoms = self.randoms.copy()
            	    temp_randoms[:,0] += xi
            	    temp_randoms[:,1] += yi
            	    temp_randoms[:,2] += zi
            	    obvs = []

            	    for obv in observables:
                        if obv == 'nbar':
                    	    obvs.append(len(pos) / 200**3.)       # nbar of the galaxy catalog
                        elif obv == 'gmf':
                            nbar = len(pos) / 200**3.
    		            b = self.b_normal * (nbar)**(-1./3) 
    		            groups = pyfof.friends_of_friends(pos , b)
    		            w = np.array([len(x) for x in groups])
    		    	    gbins =data_gmf_bins()
    		            gmf = np.histogram(w , gbins)[0] / (200.**3.)
                    	    obvs.append(gmf)   
                        elif obv == 'xi':
                    	    greek_xi = tpcf(
                                     pos, rbins, pos, 
                        	     randoms=temp_randoms, period = period, 
                                     max_sample_size=int(1e5), estimator='Natural', 
                                     approx_cell1_size=approx_cell1_size, 
                                     approx_cellran_size=approx_cellran_size,
                                     RR_precomputed = self.RR,
	                             NR_precomputed = self.NR)

                    	    obvs.append(greek_xi)
                        else:
                            raise NotImplementedError('Only nbar, tpcf, and gmf are implemented so far')

                    return obvs

                except ValueError:

                    obvs = []
                    for obv in observables:
                        if obv == 'nbar':
                            obvs.append(10.)
                        elif obv == 'gmf':
                            bins = data_gmf_bins()
                            obvs.append(np.ones_like(bins)[:-1]*1000.)
                        elif obv == 'xi':
                            obvs.append(np.zeros(len(xi_binedges()[:-1])))
                    return obvs
            else:
                obvs = []
                for obv in observables:
                    if obv == 'nbar':
                        obvs.append(10.)
                    elif obv == 'gmf':
                        bins = data_gmf_bins()
                        obvs.append(np.ones_like(bins)[:-1]*1000.)
                    elif obv == 'xi':
                        obvs.append(np.zeros(len(xi_binedges()[:-1])))
                return obvs