def accept(self, guess):
     guess_cost = path_cost(guess)
     if guess_cost < self.cur_cost:
         self.cur_cost, self.route = guess_cost, guess
         if guess_cost < self.best_fitness:
             self.best_fitness, self.route = guess_cost, guess
     else:
         if random.random() < self.accept_probability(guess_cost):
             self.cur_cost, self.route = guess_cost, guess
 def greedy_solution(self):
     start_node = random.randint(0, self.num_cities)  # start from a random node
     unvisited = self.cities[:]
     del unvisited[start_node]
     route = [cities[start_node]]
     while len(unvisited):
         index, nearest_city = min(enumerate(unvisited), key=lambda item: item[1].distance(route[-1]))
         route.append(nearest_city)
         del unvisited[index]
     current_cost = path_cost(route)
     self.progress.append(current_cost)
     return route, current_cost
 def run(self, plot):
     if plot:
         plt.ion()
         plt.show(block=False)
         self.init_plot()
     while len(self.unvisited):
         index, nearest_city = min(
             enumerate(self.unvisited),
             key=lambda item: item[1].distance(self.route[-1]))
         self.route.append(nearest_city)
         del self.unvisited[index]
         self.plot_interactive(False)
     self.route.append(self.route[0])
     self.plot_interactive(False)
     self.route.pop()
     return path_cost(self.route)
Example #4
0
 def path_cost(self):
     return path_cost(self.route)
Example #5
0
 def run(self):
     self.cities = min(itertools.permutations(self.cities),
                       key=lambda path: path_cost(path))
     return path_cost(self.cities)
import itertools
import matplotlib.pyplot as plt
from util import City, read_cities, write_cities_and_return_them, generate_cities, path_cost


def solve_tsp_dynamic(cities):
    distance_matrix = [[x.distance(y) for y in cities] for x in cities]
    cities_a = {(frozenset([0, idx + 1]), idx + 1): (dist, [0, idx + 1]) for idx, dist in
                enumerate(distance_matrix[0][1:])}
    for m in range(2, len(cities)):
        cities_b = {}
        for cities_set in [frozenset(C) | {0} for C in itertools.combinations(range(1, len(cities)), m)]:
            for j in cities_set - {0}:
                cities_b[(cities_set, j)] = min([(cities_a[(cities_set - {j}, k)][0] + distance_matrix[k][j],
                                                  cities_a[(cities_set - {j}, k)][1] + [j])
                                                 for k in cities_set if k != 0 and k != j])
        cities_a = cities_b
    res = min([(cities_a[d][0] + distance_matrix[0][d[1]], cities_a[d][1]) for d in iter(cities_a)])
    return res[1]


if __name__ == "__main__":

    cities = read_cities(16)
    g = solve_tsp_dynamic(cities)
    sol = [cities[gi] for gi in g]
    print(path_cost(sol))
    plt.show(block=True)