def saveTransitionProb(self, transFile): transProb = {} ''' your code here ''' for oldTile, newDict in self.posDict.iteritems(): weightSum = 0.0 for newTile, weight in newDict.iteritems(): weightSum += weight for newTile, weight in newDict.iteritems(): self.posDict[oldTile][newTile] = weight / weightSum transProb = self.posDict util.saveTransProb(transProb, transFile)
def saveTransitionProb(self, transFile): transProb = {} # transProb is a dict {(oldTile, newTile) : prob} # First normalize the counters for oldTile in self.transitions: counter = self.transitions[oldTile] s = float(sum(counter.values())) for key in counter: counter[key] /= s for oldTile in self.transitions: for newTile in self.transitions: transProb[(oldTile, newTile)] = self.transitions[oldTile][newTile] util.saveTransProb(transProb, transFile) ### COMMENTED SO THAT WE DO NOT OVERRIDE ANY LEARNED PROBABILITIES
def saveTransitionProb(self, transFile): transProb = {} transProb = self.transTable print transProb for oldRow in self.transTable: for oldCol in self.transTable[oldRow]: total = float(self.visitedTable[oldRow][oldCol]) for newRow in self.transTable[oldRow][oldCol]: for newCol, freq in self.transTable[oldRow][oldCol][newRow].iteritems(): transProb[oldRow][oldCol][newRow][newCol] = freq/total #print "transProb: ", transProb #data = [transProb, self.visitedTable] #util.saveTransProb(data, transFile) util.saveTransProb(transProb, transFile)
def saveTransitionProb(self, transFile): transProb = {} ''' your code here ''' for oldTile in self.info.keys(): sum = (float)(0) for newTile in self.info[oldTile].keys(): sum += self.info[oldTile][newTile] for newTile in self.info[oldTile].keys(): val = self.info[oldTile][newTile] / sum self.info[oldTile][newTile] = val for oldTile in self.info.keys(): for newTile in self.info[oldTile].keys(): transProb[(oldTile, newTile)] = self.info[oldTile][newTile] util.saveTransProb(transProb, transFile)
def saveTransitionProb(self, transFile): transProb = {} ''' your code here ''' util.saveTransProb(transProb, transFile)