import numpy as np import util import matplotlib matplotlib.use('TkAgg') from matplotlib import pyplot as plt import visual_words import visual_recog import skimage.io if __name__ == '__main__': num_cores = util.get_num_CPU() path_img = "../data/laundromat/sun_aiyluzcowlbwxmdb.jpg" image = skimage.io.imread(path_img) image = image.astype('float') / 255 #filter_responses = visual_words.extract_filter_responses(image) #util.display_filter_responses(filter_responses) #visual_words.compute_dictionary(num_workers=num_cores) dictionary = np.load('dictionary.npy') wordmap = visual_words.get_visual_words(image, dictionary) filename = 'figure3' util.save_wordmap(wordmap, filename) #visual_recog.build_recognition_system(num_workers=num_cores) #conf, accuracy = visual_recog.evaluate_recognition_system(num_workers=num_cores) #print(conf) #print(np.diag(conf).sum()/conf.sum())
import skimage.io import time if __name__ == '__main__': start = time.time() #ctl num_cores = util.get_num_CPU() # path_img = "../data/kitchen/sun_avuzlcqxzrzteyvc.jpg" path_img = "../data/aquarium/sun_aztvjgubyrgvirup.jpg" image = skimage.io.imread(path_img) image = image.astype('float') / 255 filter_responses = visual_words.extract_filter_responses(image) # util.display_filter_responses(filter_responses) # visual_words.compute_dictionary(num_workers=num_cores) dictionary = np.load('dictionary.npy') wordmap = visual_words.get_visual_words(image, dictionary) util.save_wordmap(wordmap, "wordmap_n") # visual_recog.get_feature_from_wordmap(wordmap,dictionary.shape[0]) #ctl # visual_recog.get_feature_from_wordmap_SPM(wordmap,3,dictionary.shape[0]) #ctl visual_recog.build_recognition_system( num_workers=num_cores ) # approx 12 min for 100 files, about 2 hr for 1000 files conf, accuracy = visual_recog.evaluate_recognition_system( num_workers=num_cores) # approx 1 hr for 577 files # print(conf) # print(np.diag(conf).sum()/conf.sum()) end = time.time() #ctl print("Time: ", end - start) #ctl
import numpy as np import util import matplotlib from matplotlib import pyplot as plt import visual_words import visual_recog import skimage.io if __name__ == '__main__': num_cores = util.get_num_CPU() path_img = "../data/waterfall/sun_bolfhwtizbvyjmem.jpg" image = skimage.io.imread(path_img) image = image.astype('float') / 255 filter_responses = visual_words.extract_filter_responses(image) util.display_filter_responses(filter_responses) visual_words.compute_dictionary(num_workers=num_cores) dictionary = np.load('dictionary.npy') wordmap = visual_words.get_visual_words(image, dictionary) util.save_wordmap(wordmap, "waterfall_3.jpg") visual_recog.build_recognition_system(num_workers=num_cores) conf, accurSacy = visual_recog.evaluate_recognition_system( num_workers=num_cores) print(conf) print(np.diag(conf).sum() / conf.sum())
import deep_recog import skimage if __name__ == '__main__': num_cores = util.get_num_CPU() path_img = "../data/park/labelme_vtvrcfujsukawzl.jpg" image = skimage.io.imread(path_img) image = np.array(image) / 255 filter_responses = visual_words.extract_filter_responses(image) util.display_filter_responses(filter_responses) visual_words.compute_dictionary(num_workers=num_cores) dictionary = np.load('dictionary.npy') img = visual_words.get_visual_words(image, dictionary) util.save_wordmap(img, '../results/wordmap_3.png') visual_recog.build_recognition_system(num_workers=num_cores) conf, accuracy = visual_recog.evaluate_recognition_system( num_workers=num_cores) print(conf) print(np.diag(conf).sum() / conf.sum()) vgg16 = torchvision.models.vgg16(pretrained=True).double() vgg16.eval() deep_recog.build_recognition_system(vgg16, num_workers=num_cores // 2) conf = deep_recog.evaluate_recognition_system(vgg16, num_workers=num_cores // 2) print(conf) print(np.diag(conf).sum() / conf.sum())
if __name__ == '__main__': num_cores = util.get_num_CPU() path_img = "../data/kitchen/sun_aasmevtpkslccptd.jpg" image = skimage.io.imread(path_img) image = image.astype('float') / 255 filter_responses = visual_words.extract_filter_responses(image) util.display_filter_responses(filter_responses) visual_words.compute_dictionary(num_workers=num_cores) dictionary = np.load('dictionary.npy') filename = "test.jpg" img = visual_words.get_visual_words(image, dictionary) util.save_wordmap(img, filename) visual_recog.build_recognition_system(num_workers=num_cores) conf, accuracy = visual_recog.evaluate_recognition_system( num_workers=num_cores) print(conf) print(np.diag(conf).sum() / conf.sum()) vgg16 = torchvision.models.vgg16(pretrained=True).double() vgg16.eval() deep_recog.build_recognition_system(vgg16, num_workers=num_cores) conf, accuracy = deep_recog.evaluate_recognition_system( vgg16, num_workers=num_cores) print(conf) print(np.diag(conf).sum() / conf.sum())
#path_img = "../data/auditorium/sun_aflgfyywvxbpeyxl.jpg" #path_img = "../data/baseball_field/sun_aalztykafqwxrspj.jpg" path_img = "../data/kitchen/sun_aasmevtpkslccptd.jpg" #path_img = "../data/highway/sun_acpvugnkzrliaqir.jpg" image = skimage.io.imread(path_img) image = image.astype('float') / 255 filter_responses = visual_words.extract_filter_responses(image) util.display_filter_responses(filter_responses) visual_words.compute_dictionary(num_workers=num_cores) dictionary = np.load('dictionary.npy') wordmap = visual_words.get_visual_words(image, dictionary) util.save_wordmap(wordmap, 'word_map.jpg') visual_recog.build_recognition_system(num_workers=num_cores) conf, accuracy = visual_recog.evaluate_recognition_system( num_workers=num_cores) print(conf) print(accuracy) #vgg16 = torchvision.models.vgg16(pretrained=True).double() #vgg16.eval() vgg16 = util.vgg16_fc7() #deep_recog.build_recognition_system(vgg16,num_workers=num_cores//2) conf, accuracy = deep_recog.evaluate_recognition_system( vgg16, num_workers=num_cores // 2)