Example #1
0
File: op.py Project: hmi88/mcbn
    def __init__(self, config, ckeck_point):
        self.config = config
        self.epochs = config.epochs
        self.model_type = config.model
        self.ckpt = ckeck_point
        self.tensorboard = config.tensorboard
        if self.tensorboard:
            self.summary_writer = SummaryWriter(self.ckpt.log_dir, 300)

        # set model, criterion, optimizer
        self.model = Model(config)
        summary(self.model, config_file=self.ckpt.config_file)

        # set criterion, optimizer
        self.criterion = Loss(config)
        self.optimizer = make_optimizer(config, self.model)

        # load ckpt, model, optimizer
        if (self.ckpt.exp_load is not None) or (not config.is_train):
            print("Loading model... ")
            self.load(self.ckpt)
            print(self.ckpt.last_epoch, self.ckpt.global_step)
Example #2
0
def summary_text(text, l):
    return summary(text, l)
Example #3
0
                                              use_noise=args['--use_noise'],
                                              noise_sigma=float(
                                                  args['--noise_sigma']))

    video_discriminator = build_discriminator(args['--video_discriminator'],
                                              dim_categorical=dim_z_category,
                                              n_channels=n_channels,
                                              use_noise=args['--use_noise'],
                                              noise_sigma=float(
                                                  args['--noise_sigma']))

    if torch.cuda.is_available():
        generator.cuda()
        image_discriminator.cuda()
        video_discriminator.cuda()

    print('The number of parameters for Video disciminator is : {0}'.format(
        count_parameters(video_discriminator)))
    summary((3, 64, 64, 16), video_discriminator)

    trainer = Trainer(image_loader,
                      video_loader,
                      int(args['--print_every']),
                      int(args['--batches']),
                      args['<log_folder>'],
                      use_cuda=torch.cuda.is_available(),
                      use_infogan=args['--use_infogan'],
                      use_categories=args['--use_categories'])

    trainer.train(generator, image_discriminator, video_discriminator)
Example #4
0
 def summary(self, size=30):
     return summary(self.get_markdown(), size)
Example #5
0
 def summary(self, size=30):
     return summary(self.get_markdown(), size)
Example #6
0
def summary_text(text, l):
    return summary(text, l)