Example #1
0
            def kron_loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""

                # kron_matmul(dd, g) = dd @ g.t()
                return u.to_python_scalar(eps * (u.kron_matmul(dd, g)) -
                                          0.5 * eps**2 *
                                          u.kron_quadratic_form(H, dd))
Example #2
0
 def curv_direction(dd: torch.Tensor):
     """Curvature in direction dd"""
     return u.to_python_scalar(dd @ H @ dd.t() /
                               (dd.flatten().norm()**2))
Example #3
0
 def loss_direction(dd: torch.Tensor, eps):
     """loss improvement if we take step eps in direction dd"""
     return u.to_python_scalar(eps * (dd @ g.t()) -
                               0.5 * eps**2 * dd @ H @ dd.t())
Example #4
0
def test_main():

    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--test-batch-size',
                        type=int,
                        default=1000,
                        metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs',
                        type=int,
                        default=10,
                        metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr',
                        type=float,
                        default=0.01,
                        metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum',
                        type=float,
                        default=0.5,
                        metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--no-cuda',
                        action='store_true',
                        default=False,
                        help='disables CUDA training')
    parser.add_argument('--seed',
                        type=int,
                        default=1,
                        metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument(
        '--log-interval',
        type=int,
        default=10,
        metavar='N',
        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model',
                        action='store_true',
                        default=False,
                        help='For Saving the current Model')

    parser.add_argument('--wandb',
                        type=int,
                        default=1,
                        help='log to weights and biases')
    parser.add_argument('--autograd_check',
                        type=int,
                        default=0,
                        help='autograd correctness checks')
    parser.add_argument('--logdir',
                        type=str,
                        default='/temp/runs/curv_train_tiny/run')

    parser.add_argument('--train_batch_size', type=int, default=100)
    parser.add_argument('--stats_batch_size', type=int, default=60000)
    parser.add_argument('--dataset_size', type=int, default=60000)
    parser.add_argument('--train_steps',
                        type=int,
                        default=100,
                        help="this many train steps between stat collection")
    parser.add_argument('--stats_steps',
                        type=int,
                        default=1000000,
                        help="total number of curvature stats collections")
    parser.add_argument('--nonlin',
                        type=int,
                        default=1,
                        help="whether to add ReLU nonlinearity between layers")
    parser.add_argument('--method',
                        type=str,
                        choices=['gradient', 'newton'],
                        default='gradient',
                        help="descent method, newton or gradient")
    parser.add_argument('--layer',
                        type=int,
                        default=-1,
                        help="restrict updates to this layer")
    parser.add_argument('--data_width', type=int, default=28)
    parser.add_argument('--targets_width', type=int, default=28)
    parser.add_argument('--lmb', type=float, default=1e-3)
    parser.add_argument(
        '--hess_samples',
        type=int,
        default=1,
        help='number of samples when sub-sampling outputs, 0 for exact hessian'
    )
    parser.add_argument('--hess_kfac',
                        type=int,
                        default=0,
                        help='whether to use KFAC approximation for hessian')
    parser.add_argument('--compute_rho',
                        type=int,
                        default=1,
                        help='use expensive method to compute rho')
    parser.add_argument('--skip_stats',
                        type=int,
                        default=0,
                        help='skip all stats collection')
    parser.add_argument('--full_batch',
                        type=int,
                        default=0,
                        help='do stats on the whole dataset')
    parser.add_argument('--weight_decay', type=float, default=1e-4)

    #args = parser.parse_args()
    args = AttrDict()
    args.lmb = 1e-3
    args.compute_rho = 1
    args.weight_decay = 1e-4
    args.method = 'gradient'
    args.logdir = '/tmp'
    args.data_width = 2
    args.targets_width = 2
    args.train_batch_size = 10
    args.full_batch = False
    args.skip_stats = False
    args.autograd_check = False

    u.seed_random(1)
    logdir = u.create_local_logdir(args.logdir)
    run_name = os.path.basename(logdir)
    #gl.event_writer = SummaryWriter(logdir)
    gl.event_writer = u.NoOp()
    # print(f"Logging to {run_name}")

    # small values for debugging
    # loss_type = 'LeastSquares'
    loss_type = 'CrossEntropy'

    args.wandb = 0
    args.stats_steps = 10
    args.train_steps = 10
    args.stats_batch_size = 10
    args.data_width = 2
    args.targets_width = 2
    args.nonlin = False
    d1 = args.data_width**2
    d2 = 2
    d3 = args.targets_width**2

    d1 = args.data_width**2
    assert args.data_width == args.targets_width
    o = d1
    n = args.stats_batch_size
    d = [d1, 30, 30, 30, 20, 30, 30, 30, d1]

    if loss_type == 'CrossEntropy':
        d3 = 10
    o = d3
    n = args.stats_batch_size
    d = [d1, d2, d3]
    dsize = max(args.train_batch_size, args.stats_batch_size) + 1

    model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin)
    model = model.to(gl.device)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['method'] = args.method
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    # optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9)
    optimizer = torch.optim.Adam(
        model.parameters(), lr=0.03)  # make 10x smaller for least-squares loss
    dataset = u.TinyMNIST(data_width=args.data_width,
                          targets_width=args.targets_width,
                          dataset_size=dsize,
                          original_targets=True)

    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=False,
        drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_iter = None
    if not args.full_batch:
        stats_loader = torch.utils.data.DataLoader(
            dataset,
            batch_size=args.stats_batch_size,
            shuffle=False,
            drop_last=True)
        stats_iter = u.infinite_iter(stats_loader)

    test_dataset = u.TinyMNIST(data_width=args.data_width,
                               targets_width=args.targets_width,
                               train=False,
                               dataset_size=dsize,
                               original_targets=True)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.train_batch_size,
                                              shuffle=False,
                                              drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    elif loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.token_count = 0
    last_outer = 0
    val_losses = []
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars(
                {"time/outer": 1000 * (time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            # print("val_loss", val_loss.item())
            val_losses.append(val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        # compute stats
        if args.full_batch:
            data, targets = dataset.data, dataset.targets
        else:
            data, targets = next(stats_iter)

        # Capture Hessian and gradient stats
        autograd_lib.enable_hooks()
        autograd_lib.clear_backprops(model)
        autograd_lib.clear_hess_backprops(model)
        with u.timeit("backprop_g"):
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward(retain_graph=True)
        with u.timeit("backprop_H"):
            autograd_lib.backprop_hess(output, hess_type=loss_type)
        autograd_lib.disable_hooks()  # TODO(y): use remove_hooks

        with u.timeit("compute_grad1"):
            autograd_lib.compute_grad1(model)
        with u.timeit("compute_hess"):
            autograd_lib.compute_hess(model)

        for (i, layer) in enumerate(model.layers):

            # input/output layers are unreasonably expensive if not using Kronecker factoring
            if d[i] > 50 or d[i + 1] > 50:
                print(
                    f'layer {i} is too big ({d[i], d[i + 1]}), skipping stats')
                continue

            if args.skip_stats:
                continue

            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops_list[0] * n
            assert B_t.shape == (n, d[i + 1])

            with u.timeit(f"khatri_g-{i}"):
                G = u.khatri_rao_t(B_t, A_t)  # batch loss Jacobian
            assert G.shape == (n, d[i] * d[i + 1])
            g = G.sum(dim=0, keepdim=True) / n  # average gradient
            assert g.shape == (1, d[i] * d[i + 1])

            u.check_equal(G.reshape(layer.weight.grad1.shape),
                          layer.weight.grad1)

            if args.autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]),
                              layer.weight.saved_grad)

            s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel(
            )  # proportion of activations that are zero
            s.mean_activation = torch.mean(A_t)
            s.mean_backprop = torch.mean(B_t)

            # empirical Fisher
            with u.timeit(f'sigma-{i}'):
                efisher = G.t() @ G / n
                sigma = efisher - g.t() @ g
                s.sigma_l2 = u.sym_l2_norm(sigma)
                s.sigma_erank = torch.trace(sigma) / s.sigma_l2

            lambda_regularizer = args.lmb * torch.eye(d[i + 1] * d[i]).to(
                gl.device)
            H = layer.weight.hess

            with u.timeit(f"invH-{i}"):
                invH = torch.cholesky_inverse(H + lambda_regularizer)

            with u.timeit(f"H_l2-{i}"):
                s.H_l2 = u.sym_l2_norm(H)
                s.iH_l2 = u.sym_l2_norm(invH)

            with u.timeit(f"norms-{i}"):
                s.H_fro = H.flatten().norm()
                s.iH_fro = invH.flatten().norm()
                s.grad_fro = g.flatten().norm()
                s.param_fro = layer.weight.data.flatten().norm()

            u.nan_check(H)
            if args.autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                H_autograd = H_autograd.reshape(d[i] * d[i + 1],
                                                d[i] * d[i + 1])
                u.check_close(H, H_autograd)

            #  u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}')
            def loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""
                return u.to_python_scalar(eps * (dd @ g.t()) -
                                          0.5 * eps**2 * dd @ H @ dd.t())

            def curv_direction(dd: torch.Tensor):
                """Curvature in direction dd"""
                return u.to_python_scalar(dd @ H @ dd.t() /
                                          (dd.flatten().norm()**2))

            with u.timeit(f"pinvH-{i}"):
                pinvH = H.pinverse()

            with u.timeit(f'curv-{i}'):
                s.grad_curv = curv_direction(g)
                ndir = g @ pinvH  # newton direction
                s.newton_curv = curv_direction(ndir)
                setattr(layer.weight, 'pre',
                        pinvH)  # save Newton preconditioner
                s.step_openai = s.grad_fro**2 / s.grad_curv if s.grad_curv else 999
                s.step_max = 2 / s.H_l2
                s.step_min = torch.tensor(2) / torch.trace(H)

                s.newton_fro = ndir.flatten().norm(
                )  # frobenius norm of Newton update
                s.regret_newton = u.to_python_scalar(
                    g @ pinvH @ g.t() / 2)  # replace with "quadratic_form"
                s.regret_gradient = loss_direction(g, s.step_openai)

            with u.timeit(f'rho-{i}'):
                p_sigma = u.lyapunov_spectral(H, sigma)

                discrepancy = torch.max(abs(p_sigma - p_sigma.t()) / p_sigma)

                s.psigma_erank = u.sym_erank(p_sigma)
                s.rho = H.shape[0] / s.psigma_erank

            with u.timeit(f"batch-{i}"):
                s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t())
                s.diversity = torch.norm(G, "fro")**2 / torch.norm(g)**2 / n

                # Faster approaches for noise variance computation
                # s.noise_variance = torch.trace(H.inverse() @ sigma)
                # try:
                #     # this fails with singular sigma
                #     s.noise_variance = torch.trace(torch.solve(sigma, H)[0])
                #     # s.noise_variance = torch.trace(torch.lstsq(sigma, H)[0])
                #     pass
                # except RuntimeError as _:
                s.noise_variance_pinv = torch.trace(pinvH @ sigma)

                s.H_erank = torch.trace(H) / s.H_l2
                s.batch_jain_simple = 1 + s.H_erank
                s.batch_jain_full = 1 + s.rho * s.H_erank

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        with u.timeit('inner'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                #            u.log_scalar(train_loss=loss.item())

                if args.method != 'newton':
                    optimizer.step()
                    if args.weight_decay:
                        for group in optimizer.param_groups:
                            for param in group['params']:
                                param.data.mul_(1 - args.weight_decay)
                else:
                    for (layer_idx, layer) in enumerate(model.layers):
                        param: torch.nn.Parameter = layer.weight
                        param_data: torch.Tensor = param.data
                        param_data.copy_(param_data - 0.1 * param.grad)
                        if layer_idx != 1:  # only update 1 layer with Newton, unstable otherwise
                            continue
                        u.nan_check(layer.weight.pre)
                        u.nan_check(param.grad.flatten())
                        u.nan_check(
                            u.v2r(param.grad.flatten()) @ layer.weight.pre)
                        param_new_flat = u.v2r(param_data.flatten()) - u.v2r(
                            param.grad.flatten()) @ layer.weight.pre
                        u.nan_check(param_new_flat)
                        param_data.copy_(
                            param_new_flat.reshape(param_data.shape))

                gl.token_count += data.shape[0]

    gl.event_writer.close()

    assert val_losses[0] > 2.4  # 2.4828238487243652
    assert val_losses[-1] < 2.25  # 2.20609712600708
Example #5
0
def main():

    u.seed_random(1)
    logdir = u.create_local_logdir(args.logdir)
    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {run_name}")

    d1 = args.data_width ** 2
    assert args.data_width == args.targets_width
    o = d1
    n = args.stats_batch_size
    d = [d1, 30, 30, 30, 20, 30, 30, 30, d1]

    # small values for debugging
    # loss_type = 'LeastSquares'
    loss_type = 'CrossEntropy'

    args.wandb = 0
    args.stats_steps = 10
    args.train_steps = 10
    args.stats_batch_size = 10
    args.data_width = 2
    args.targets_width = 2
    args.nonlin = False
    d1 = args.data_width ** 2
    d2 = 2
    d3 = args.targets_width ** 2

    if loss_type == 'CrossEntropy':
        d3 = 10
    o = d3
    n = args.stats_batch_size
    d = [d1, d2, d3]
    dsize = max(args.train_batch_size, args.stats_batch_size)+1

    model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin)
    model = model.to(gl.device)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['method'] = args.method
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    #optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.03)  # make 10x smaller for least-squares loss
    dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, dataset_size=dsize, original_targets=True)

    train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_iter = None
    if not args.full_batch:
        stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True)
        stats_iter = u.infinite_iter(stats_loader)

    test_dataset = u.TinyMNIST(data_width=args.data_width, targets_width=args.targets_width, train=False, dataset_size=dsize, original_targets=True)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    elif loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.token_count = 0
    last_outer = 0
    val_losses = []
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars({"time/outer": 1000*(time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            print("val_loss", val_loss.item())
            val_losses.append(val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        # compute stats
        if args.full_batch:
            data, targets = dataset.data, dataset.targets
        else:
            data, targets = next(stats_iter)

        # Capture Hessian and gradient stats
        autograd_lib.enable_hooks()
        autograd_lib.clear_backprops(model)
        autograd_lib.clear_hess_backprops(model)
        with u.timeit("backprop_g"):
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward(retain_graph=True)
        with u.timeit("backprop_H"):
            autograd_lib.backprop_hess(output, hess_type=loss_type)
        autograd_lib.disable_hooks()   # TODO(y): use remove_hooks

        with u.timeit("compute_grad1"):
            autograd_lib.compute_grad1(model)
        with u.timeit("compute_hess"):
            autograd_lib.compute_hess(model)

        for (i, layer) in enumerate(model.layers):

            # input/output layers are unreasonably expensive if not using Kronecker factoring
            if d[i]>50 or d[i+1]>50:
                print(f'layer {i} is too big ({d[i],d[i+1]}), skipping stats')
                continue

            if args.skip_stats:
                continue

            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops_list[0] * n
            assert B_t.shape == (n, d[i + 1])

            with u.timeit(f"khatri_g-{i}"):
                G = u.khatri_rao_t(B_t, A_t)  # batch loss Jacobian
            assert G.shape == (n, d[i] * d[i + 1])
            g = G.sum(dim=0, keepdim=True) / n  # average gradient
            assert g.shape == (1, d[i] * d[i + 1])

            u.check_equal(G.reshape(layer.weight.grad1.shape), layer.weight.grad1)

            if args.autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]), layer.weight.saved_grad)

            s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel()  # proportion of activations that are zero
            s.mean_activation = torch.mean(A_t)
            s.mean_backprop = torch.mean(B_t)

            # empirical Fisher
            with u.timeit(f'sigma-{i}'):
                efisher = G.t() @ G / n
                sigma = efisher - g.t() @ g
                s.sigma_l2 = u.sym_l2_norm(sigma)
                s.sigma_erank = torch.trace(sigma)/s.sigma_l2

            lambda_regularizer = args.lmb * torch.eye(d[i + 1]*d[i]).to(gl.device)
            H = layer.weight.hess

            with u.timeit(f"invH-{i}"):
                invH = torch.cholesky_inverse(H+lambda_regularizer)

            with u.timeit(f"H_l2-{i}"):
                s.H_l2 = u.sym_l2_norm(H)
                s.iH_l2 = u.sym_l2_norm(invH)

            with u.timeit(f"norms-{i}"):
                s.H_fro = H.flatten().norm()
                s.iH_fro = invH.flatten().norm()
                s.grad_fro = g.flatten().norm()
                s.param_fro = layer.weight.data.flatten().norm()

            u.nan_check(H)
            if args.autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                H_autograd = H_autograd.reshape(d[i] * d[i + 1], d[i] * d[i + 1])
                u.check_close(H, H_autograd)

            #  u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}')
            def loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""
                return u.to_python_scalar(eps * (dd @ g.t()) - 0.5 * eps ** 2 * dd @ H @ dd.t())

            def curv_direction(dd: torch.Tensor):
                """Curvature in direction dd"""
                return u.to_python_scalar(dd @ H @ dd.t() / (dd.flatten().norm() ** 2))

            with u.timeit(f"pinvH-{i}"):
                pinvH = u.pinv(H)

            with u.timeit(f'curv-{i}'):
                s.grad_curv = curv_direction(g)
                ndir = g @ pinvH  # newton direction
                s.newton_curv = curv_direction(ndir)
                setattr(layer.weight, 'pre', pinvH)  # save Newton preconditioner
                s.step_openai = s.grad_fro**2 / s.grad_curv if s.grad_curv else 999
                s.step_max = 2 / s.H_l2
                s.step_min = torch.tensor(2) / torch.trace(H)

                s.newton_fro = ndir.flatten().norm()  # frobenius norm of Newton update
                s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2)   # replace with "quadratic_form"
                s.regret_gradient = loss_direction(g, s.step_openai)

            with u.timeit(f'rho-{i}'):
                p_sigma = u.lyapunov_svd(H, sigma)
                if u.has_nan(p_sigma) and args.compute_rho:  # use expensive method
                    print('using expensive method')
                    import pdb; pdb.set_trace()
                    H0, sigma0 = u.to_numpys(H, sigma)
                    p_sigma = scipy.linalg.solve_lyapunov(H0, sigma0)
                    p_sigma = torch.tensor(p_sigma).to(gl.device)

                if u.has_nan(p_sigma):
                    # import pdb; pdb.set_trace()
                    s.psigma_erank = H.shape[0]
                    s.rho = 1
                else:
                    s.psigma_erank = u.sym_erank(p_sigma)
                    s.rho = H.shape[0] / s.psigma_erank

            with u.timeit(f"batch-{i}"):
                s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t())
                s.diversity = torch.norm(G, "fro") ** 2 / torch.norm(g) ** 2 / n

                # Faster approaches for noise variance computation
                # s.noise_variance = torch.trace(H.inverse() @ sigma)
                # try:
                #     # this fails with singular sigma
                #     s.noise_variance = torch.trace(torch.solve(sigma, H)[0])
                #     # s.noise_variance = torch.trace(torch.lstsq(sigma, H)[0])
                #     pass
                # except RuntimeError as _:
                s.noise_variance_pinv = torch.trace(pinvH @ sigma)

                s.H_erank = torch.trace(H) / s.H_l2
                s.batch_jain_simple = 1 + s.H_erank
                s.batch_jain_full = 1 + s.rho * s.H_erank

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        with u.timeit('inner'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                #            u.log_scalar(train_loss=loss.item())

                if args.method != 'newton':
                    optimizer.step()
                    if args.weight_decay:
                        for group in optimizer.param_groups:
                            for param in group['params']:
                                param.data.mul_(1-args.weight_decay)
                else:
                    for (layer_idx, layer) in enumerate(model.layers):
                        param: torch.nn.Parameter = layer.weight
                        param_data: torch.Tensor = param.data
                        param_data.copy_(param_data - 0.1 * param.grad)
                        if layer_idx != 1:  # only update 1 layer with Newton, unstable otherwise
                            continue
                        u.nan_check(layer.weight.pre)
                        u.nan_check(param.grad.flatten())
                        u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre)
                        param_new_flat = u.v2r(param_data.flatten()) - u.v2r(param.grad.flatten()) @ layer.weight.pre
                        u.nan_check(param_new_flat)
                        param_data.copy_(param_new_flat.reshape(param_data.shape))

                gl.token_count += data.shape[0]

    gl.event_writer.close()
Example #6
0
def main():
    attemp_count = 0
    while os.path.exists(f"{args.logdir}{attemp_count:02d}"):
        attemp_count += 1
    logdir = f"{args.logdir}{attemp_count:02d}"

    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {run_name}")
    u.seed_random(1)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['method'] = args.method

    except Exception as e:
        print(f"wandb crash with {e}")

    #    data_width = 4
    #    targets_width = 2

    d1 = args.data_width**2
    d2 = 10
    d3 = args.targets_width**2
    o = d3
    n = args.stats_batch_size
    d = [d1, d2, d3]
    model = u.SimpleFullyConnected(d, nonlin=args.nonlin)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)

    dataset = u.TinyMNIST(data_width=args.data_width,
                          targets_width=args.targets_width,
                          dataset_size=args.dataset_size)
    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=False,
        drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.stats_batch_size,
        shuffle=False,
        drop_last=True)
    stats_iter = u.infinite_iter(stats_loader)

    def capture_activations(module, input, _output):
        if skip_forward_hooks:
            return
        assert gl.backward_idx == 0  # no need to forward-prop on Hessian computation
        assert not hasattr(
            module, 'activations'
        ), "Seeing activations from previous forward, call util.zero_grad to clear"
        assert len(input) == 1, "this works for single input layers only"
        setattr(module, "activations", input[0].detach())

    def capture_backprops(module: nn.Module, _input, output):
        if skip_backward_hooks:
            return
        assert len(output) == 1, "this works for single variable layers only"
        if gl.backward_idx == 0:
            assert not hasattr(
                module, 'backprops'
            ), "Seeing results of previous autograd, call util.zero_grad to clear"
            setattr(module, 'backprops', [])
        assert gl.backward_idx == len(module.backprops)
        module.backprops.append(output[0])

    def save_grad(param: nn.Parameter) -> Callable[[torch.Tensor], None]:
        """Hook to save gradient into 'param.saved_grad', so it can be accessed after model.zero_grad(). Only stores gradient
        if the value has not been set, call util.zero_grad to clear it."""
        def save_grad_fn(grad):
            if not hasattr(param, 'saved_grad'):
                setattr(param, 'saved_grad', grad)

        return save_grad_fn

    for layer in model.layers:
        layer.register_forward_hook(capture_activations)
        layer.register_backward_hook(capture_backprops)
        layer.weight.register_hook(save_grad(layer.weight))

    def loss_fn(data, targets):
        err = data - targets.view(-1, data.shape[1])
        assert len(data) == len(targets)
        return torch.sum(err * err) / 2 / len(data)

    gl.token_count = 0
    for step in range(args.stats_steps):
        data, targets = next(stats_iter)
        skip_forward_hooks = False
        skip_backward_hooks = False

        # get gradient values
        gl.backward_idx = 0
        u.zero_grad(model)
        output = model(data)
        loss = loss_fn(output, targets)
        loss.backward(retain_graph=True)

        print("loss", loss.item())

        # get Hessian values
        skip_forward_hooks = True
        id_mat = torch.eye(o)

        u.log_scalars({'loss': loss.item()})

        # o = 0
        for out_idx in range(o):
            model.zero_grad()
            # backprop to get section of batch output jacobian for output at position out_idx
            output = model(
                data
            )  # opt: using autograd.grad means I don't have to zero_grad
            ei = id_mat[out_idx]
            bval = torch.stack([ei] * n)
            gl.backward_idx = out_idx + 1
            output.backward(bval)
        skip_backward_hooks = True  #

        for (i, layer) in enumerate(model.layers):
            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops[0] * n
            assert B_t.shape == (n, d[i + 1])

            G = u.khatri_rao_t(B_t, A_t)  # batch loss Jacobian
            assert G.shape == (n, d[i] * d[i + 1])
            g = G.sum(dim=0, keepdim=True) / n  # average gradient
            assert g.shape == (1, d[i] * d[i + 1])

            if args.autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]),
                              layer.weight.saved_grad)

            # empirical Fisher
            efisher = G.t() @ G / n
            sigma = efisher - g.t() @ g
            # u.dump(sigma, f'/tmp/sigmas/{step}-{i}')
            s.sigma_l2 = u.l2_norm(sigma)

            #############################
            # Hessian stats
            #############################
            A_t = layer.activations
            Bh_t = [layer.backprops[out_idx + 1] for out_idx in range(o)]
            Amat_t = torch.cat([A_t] * o, dim=0)
            Bmat_t = torch.cat(Bh_t, dim=0)

            assert Amat_t.shape == (n * o, d[i])
            assert Bmat_t.shape == (n * o, d[i + 1])

            Jb = u.khatri_rao_t(Bmat_t,
                                Amat_t)  # batch Jacobian, in row-vec format
            H = Jb.t() @ Jb / n
            pinvH = u.pinv(H)

            s.hess_l2 = u.l2_norm(H)
            s.invhess_l2 = u.l2_norm(pinvH)

            s.hess_fro = H.flatten().norm()
            s.invhess_fro = pinvH.flatten().norm()

            s.jacobian_l2 = u.l2_norm(Jb)
            s.grad_fro = g.flatten().norm()
            s.param_fro = layer.weight.data.flatten().norm()

            u.nan_check(H)
            if args.autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                H_autograd = H_autograd.reshape(d[i] * d[i + 1],
                                                d[i] * d[i + 1])
                u.check_close(H, H_autograd)

            #  u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}')
            def loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""
                return u.to_python_scalar(eps * (dd @ g.t()) -
                                          0.5 * eps**2 * dd @ H @ dd.t())

            def curv_direction(dd: torch.Tensor):
                """Curvature in direction dd"""
                return u.to_python_scalar(dd @ H @ dd.t() /
                                          dd.flatten().norm()**2)

            s.regret_newton = u.to_python_scalar(g @ u.pinv(H) @ g.t() / 2)
            s.grad_curv = curv_direction(g)
            ndir = g @ u.pinv(H)  # newton direction
            s.newton_curv = curv_direction(ndir)
            setattr(layer.weight, 'pre',
                    u.pinv(H))  # save Newton preconditioner
            s.step_openai = 1 / s.grad_curv if s.grad_curv else 999

            s.newton_fro = ndir.flatten().norm(
            )  # frobenius norm of Newton update
            s.regret_gradient = loss_direction(g, s.step_openai)

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        for i in range(args.train_steps):
            optimizer.zero_grad()
            data, targets = next(train_iter)
            model.zero_grad()
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward()

            u.log_scalar(train_loss=loss.item())

            if args.method != 'newton':
                optimizer.step()
            else:
                for (layer_idx, layer) in enumerate(model.layers):
                    param: torch.nn.Parameter = layer.weight
                    param_data: torch.Tensor = param.data
                    param_data.copy_(param_data - 0.1 * param.grad)
                    if layer_idx != 1:  # only update 1 layer with Newton, unstable otherwise
                        continue
                    u.nan_check(layer.weight.pre)
                    u.nan_check(param.grad.flatten())
                    u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre)
                    param_new_flat = u.v2r(param_data.flatten()) - u.v2r(
                        param.grad.flatten()) @ layer.weight.pre
                    u.nan_check(param_new_flat)
                    param_data.copy_(param_new_flat.reshape(param_data.shape))

            gl.token_count += data.shape[0]

    gl.event_writer.close()
Example #7
0
def main():

    u.install_pdb_handler()
    u.seed_random(1)
    logdir = u.create_local_logdir(args.logdir)
    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {logdir}")

    loss_type = 'CrossEntropy'

    d1 = args.data_width ** 2
    args.stats_batch_size = min(args.stats_batch_size, args.dataset_size)
    args.train_batch_size = min(args.train_batch_size, args.dataset_size)
    n = args.stats_batch_size
    o = 10
    d = [d1, 60, 60, 60, o]
    # dataset_size = args.dataset_size

    model = u.SimpleFullyConnected2(d, bias=True, nonlin=args.nonlin, last_layer_linear=True)
    model = model.to(gl.device)
    u.mark_expensive(model.layers[0])    # to stop grad1/hess calculations on this layer
    print(model)

    try:
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name, dir='/tmp/wandb.runs')
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
    #  optimizer = torch.optim.Adam(model.parameters(), lr=0.03)  # make 10x smaller for least-squares loss
    dataset = u.TinyMNIST(data_width=args.data_width, dataset_size=args.dataset_size, loss_type=loss_type)

    train_loader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=False, drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_loader = torch.utils.data.DataLoader(dataset, batch_size=args.stats_batch_size, shuffle=False, drop_last=True)
    stats_iter = u.infinite_iter(stats_loader)
    stats_data, stats_targets = next(stats_iter)

    test_dataset = u.TinyMNIST(data_width=args.data_width, train=False, dataset_size=args.dataset_size, loss_type=loss_type)
    test_batch_size = min(args.dataset_size, 1000)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=test_batch_size, shuffle=False, drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    if loss_type == 'LeastSquares':
        loss_fn = u.least_squares
    else:   # loss_type == 'CrossEntropy':
        loss_fn = nn.CrossEntropyLoss()

    autograd_lib.add_hooks(model)
    gl.reset_global_step()
    last_outer = 0
    val_losses = []
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars({"time/outer": 1000*(time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()

        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            print("val_loss", val_loss.item())
            val_losses.append(val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        with u.timeit("validate"):
            if loss_type == 'CrossEntropy':
                val_accuracy, val_loss = validate(model, test_loader, f'test (stats_step {step})')
                # train_accuracy, train_loss = validate(model, train_loader, f'train (stats_step {step})')

                metrics = {'stats_step': step, 'val_accuracy': val_accuracy, 'val_loss': val_loss}
                u.log_scalars(metrics)

        data, targets = stats_data, stats_targets

        if not args.skip_stats:
            # Capture Hessian and gradient stats
            autograd_lib.enable_hooks()
            autograd_lib.clear_backprops(model)
            autograd_lib.clear_hess_backprops(model)
            with u.timeit("backprop_g"):
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward(retain_graph=True)
            with u.timeit("backprop_H"):
                autograd_lib.backprop_hess(output, hess_type=loss_type)
            autograd_lib.disable_hooks()   # TODO(y): use remove_hooks

            with u.timeit("compute_grad1"):
                autograd_lib.compute_grad1(model)
            with u.timeit("compute_hess"):
                autograd_lib.compute_hess(model)

            for (i, layer) in enumerate(model.layers):

                if hasattr(layer, 'expensive'):
                    continue

                param_names = {layer.weight: "weight", layer.bias: "bias"}
                for param in [layer.weight, layer.bias]:
                    # input/output layers are unreasonably expensive if not using Kronecker factoring
                    if d[i]*d[i+1] > 8000:
                        print(f'layer {i} is too big ({d[i],d[i+1]}), skipping stats')
                        continue

                    s = AttrDefault(str, {})  # dictionary-like object for layer stats

                    #############################
                    # Gradient stats
                    #############################
                    A_t = layer.activations
                    B_t = layer.backprops_list[0] * n
                    s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel()  # proportion of activations that are zero
                    s.mean_activation = torch.mean(A_t)
                    s.mean_backprop = torch.mean(B_t)

                    # empirical Fisher
                    G = param.grad1.reshape((n, -1))
                    g = G.mean(dim=0, keepdim=True)

                    u.nan_check(G)
                    with u.timeit(f'sigma-{i}'):
                        efisher = G.t() @ G / n
                        sigma = efisher - g.t() @ g
                        # sigma_spectrum =
                        s.sigma_l2 = u.sym_l2_norm(sigma)
                        s.sigma_erank = torch.trace(sigma)/s.sigma_l2

                    H = param.hess
                    lambda_regularizer = args.lmb * torch.eye(H.shape[0]).to(gl.device)
                    u.nan_check(H)

                    with u.timeit(f"invH-{i}"):
                        invH = torch.cholesky_inverse(H+lambda_regularizer)

                    with u.timeit(f"H_l2-{i}"):
                        s.H_l2 = u.sym_l2_norm(H)
                        s.iH_l2 = u.sym_l2_norm(invH)

                    with u.timeit(f"norms-{i}"):
                        s.H_fro = H.flatten().norm()
                        s.iH_fro = invH.flatten().norm()
                        s.grad_fro = g.flatten().norm()
                        s.param_fro = param.data.flatten().norm()

                    def loss_direction(dd: torch.Tensor, eps):
                        """loss improvement if we take step eps in direction dd"""
                        return u.to_python_scalar(eps * (dd @ g.t()) - 0.5 * eps ** 2 * dd @ H @ dd.t())

                    def curv_direction(dd: torch.Tensor):
                        """Curvature in direction dd"""
                        return u.to_python_scalar(dd @ H @ dd.t() / (dd.flatten().norm() ** 2))

                    with u.timeit(f"pinvH-{i}"):
                        pinvH = u.pinv(H)

                    with u.timeit(f'curv-{i}'):
                        s.grad_curv = curv_direction(g)  # curvature (eigenvalue) in direction g
                        ndir = g @ pinvH  # newton direction
                        s.newton_curv = curv_direction(ndir)
                        setattr(layer.weight, 'pre', pinvH)  # save Newton preconditioner
                        s.step_openai = 1 / s.grad_curv if s.grad_curv else 1234567
                        s.step_div_inf = 2 / s.H_l2         # divegent step size for batch_size=infinity
                        s.step_div_1 = torch.tensor(2) / torch.trace(H)   # divergent step for batch_size=1

                        s.newton_fro = ndir.flatten().norm()  # frobenius norm of Newton update
                        s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2)   # replace with "quadratic_form"
                        s.regret_gradient = loss_direction(g, s.step_openai)

                    with u.timeit(f'rho-{i}'):
                        s.rho, s.lyap_erank, lyap_evals = u.truncated_lyapunov_rho(H, sigma)
                        s.step_div_1_adjusted = s.step_div_1/s.rho

                    with u.timeit(f"batch-{i}"):
                        s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t())
                        s.diversity = torch.norm(G, "fro") ** 2 / torch.norm(g) ** 2 / n  # Gradient diversity / n
                        s.noise_variance_pinv = torch.trace(pinvH @ sigma)
                        s.H_erank = torch.trace(H) / s.H_l2
                        s.batch_jain_simple = 1 + s.H_erank
                        s.batch_jain_full = 1 + s.rho * s.H_erank

                    param_name = f"{layer.name}={param_names[param]}"
                    u.log_scalars(u.nest_stats(f"{param_name}", s))

                    H_evals = u.symeig_pos_evals(H)
                    sigma_evals = u.symeig_pos_evals(sigma)
                    u.log_spectrum(f'{param_name}/hess', H_evals)
                    u.log_spectrum(f'{param_name}/sigma', sigma_evals)
                    u.log_spectrum(f'{param_name}/lyap', lyap_evals)

        # gradient steps
        with u.timeit('inner'):
            for i in range(args.train_steps):
                optimizer.zero_grad()
                data, targets = next(train_iter)
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                loss.backward()

                optimizer.step()
                if args.weight_decay:
                    for group in optimizer.param_groups:
                        for param in group['params']:
                            param.data.mul_(1-args.weight_decay)

                gl.increment_global_step(data.shape[0])

    gl.event_writer.close()
Example #8
0
 def loss_direction(direction, eps):
     """loss improvement if we take step eps in direction dir"""
     return u.to_python_scalar(eps * (direction @ g.t()) - 0.5 *
                               eps**2 * direction @ H @ direction.t())
Example #9
0
    def compute_layer_stats(layer):
        refreeze = False
        if hasattr(layer, 'frozen') and layer.frozen:
            u.unfreeze(layer)
            refreeze = True

        s = AttrDefault(str, {})
        n = args.stats_batch_size
        param = u.get_param(layer)
        _d = len(param.flatten())  # dimensionality of parameters
        layer_idx = model.layers.index(layer)
        # TODO: get layer type, include it in name
        assert layer_idx >= 0
        assert stats_data.shape[0] == n

        def backprop_loss():
            model.zero_grad()
            output = model(
                stats_data)  # use last saved data batch for backprop
            loss = compute_loss(output, stats_targets)
            loss.backward()
            return loss, output

        def backprop_output():
            model.zero_grad()
            output = model(stats_data)
            output.backward(gradient=torch.ones_like(output))
            return output

        # per-example gradients, n, d
        _loss, _output = backprop_loss()
        At = layer.data_input
        Bt = layer.grad_output * n
        G = u.khatri_rao_t(At, Bt)
        g = G.sum(dim=0, keepdim=True) / n
        u.check_close(g, u.vec(param.grad).t())

        s.diversity = torch.norm(G, "fro")**2 / g.flatten().norm()**2
        s.grad_fro = g.flatten().norm()
        s.param_fro = param.data.flatten().norm()
        pos_activations = torch.sum(layer.data_output > 0)
        neg_activations = torch.sum(layer.data_output <= 0)
        s.a_sparsity = neg_activations.float() / (
            pos_activations + neg_activations)  # 1 sparsity means all 0's
        activation_size = len(layer.data_output.flatten())
        s.a_magnitude = torch.sum(layer.data_output) / activation_size

        _output = backprop_output()
        B2t = layer.grad_output
        J = u.khatri_rao_t(At, B2t)  # batch output Jacobian
        H = J.t() @ J / n

        s.hessian_l2 = u.l2_norm(H)
        s.jacobian_l2 = u.l2_norm(J)
        J1 = J.sum(dim=0) / n  # single output Jacobian
        s.J1_l2 = J1.norm()

        # newton decrement
        def loss_direction(direction, eps):
            """loss improvement if we take step eps in direction dir"""
            return u.to_python_scalar(eps * (direction @ g.t()) - 0.5 *
                                      eps**2 * direction @ H @ direction.t())

        s.regret_newton = u.to_python_scalar(g @ u.pinv(H) @ g.t() / 2)

        # TODO: gradient diversity is stuck at 1
        # TODO: newton/gradient angle
        # TODO: newton step magnitude
        s.grad_curvature = u.to_python_scalar(
            g @ H @ g.t())  # curvature in direction of g
        s.step_openai = u.to_python_scalar(
            s.grad_fro**2 / s.grad_curvature) if s.grad_curvature else 999

        s.regret_gradient = loss_direction(g, s.step_openai)

        if refreeze:
            u.freeze(layer)
        return s
Example #10
0
def main():
    attemp_count = 0
    while os.path.exists(f"{args.logdir}{attemp_count:02d}"):
        attemp_count += 1
    logdir = f"{args.logdir}{attemp_count:02d}"

    run_name = os.path.basename(logdir)
    gl.event_writer = SummaryWriter(logdir)
    print(f"Logging to {run_name}")
    u.seed_random(1)

    d1 = args.data_width**2
    d2 = 10
    d3 = args.targets_width**2
    o = d3
    n = args.stats_batch_size
    d = [d1, d2, d3]
    model = u.SimpleFullyConnected(d, nonlin=args.nonlin)
    model = model.to(gl.device)

    try:
        # os.environ['WANDB_SILENT'] = 'true'
        if args.wandb:
            wandb.init(project='curv_train_tiny', name=run_name)
            wandb.tensorboard.patch(tensorboardX=False)
            wandb.config['train_batch'] = args.train_batch_size
            wandb.config['stats_batch'] = args.stats_batch_size
            wandb.config['method'] = args.method
            wandb.config['d1'] = d1
            wandb.config['d2'] = d2
            wandb.config['d3'] = d3
            wandb.config['n'] = n
    except Exception as e:
        print(f"wandb crash with {e}")

    optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9)

    dataset = u.TinyMNIST(data_width=args.data_width,
                          targets_width=args.targets_width,
                          dataset_size=args.dataset_size)

    train_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=False,
        drop_last=True)
    train_iter = u.infinite_iter(train_loader)

    stats_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=args.stats_batch_size,
        shuffle=False,
        drop_last=True)
    stats_iter = u.infinite_iter(stats_loader)

    test_dataset = u.TinyMNIST(data_width=args.data_width,
                               targets_width=args.targets_width,
                               dataset_size=args.dataset_size,
                               train=False)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.stats_batch_size,
                                              shuffle=True,
                                              drop_last=True)
    test_iter = u.infinite_iter(test_loader)

    skip_forward_hooks = False
    skip_backward_hooks = False

    def capture_activations(module: nn.Module, input: List[torch.Tensor],
                            output: torch.Tensor):
        if skip_forward_hooks:
            return
        assert not hasattr(
            module, 'activations'
        ), "Seeing results of previous autograd, call util.zero_grad to clear"
        assert len(input) == 1, "this was tested for single input layers only"
        setattr(module, "activations", input[0].detach())
        setattr(module, "output", output.detach())

    def capture_backprops(module: nn.Module, _input, output):
        if skip_backward_hooks:
            return
        assert len(output) == 1, "this works for single variable layers only"
        if gl.backward_idx == 0:
            assert not hasattr(
                module, 'backprops'
            ), "Seeing results of previous autograd, call util.zero_grad to clear"
            setattr(module, 'backprops', [])
        assert gl.backward_idx == len(module.backprops)
        module.backprops.append(output[0])

    def save_grad(param: nn.Parameter) -> Callable[[torch.Tensor], None]:
        """Hook to save gradient into 'param.saved_grad', so it can be accessed after model.zero_grad(). Only stores gradient
        if the value has not been set, call util.zero_grad to clear it."""
        def save_grad_fn(grad):
            if not hasattr(param, 'saved_grad'):
                setattr(param, 'saved_grad', grad)

        return save_grad_fn

    for layer in model.layers:
        layer.register_forward_hook(capture_activations)
        layer.register_backward_hook(capture_backprops)
        layer.weight.register_hook(save_grad(layer.weight))

    def loss_fn(data, targets):
        err = data - targets.view(-1, data.shape[1])
        assert len(data) == len(targets)
        return torch.sum(err * err) / 2 / len(data)

    gl.token_count = 0
    last_outer = 0
    for step in range(args.stats_steps):
        if last_outer:
            u.log_scalars(
                {"time/outer": 1000 * (time.perf_counter() - last_outer)})
        last_outer = time.perf_counter()
        # compute validation loss
        skip_forward_hooks = True
        skip_backward_hooks = True
        with u.timeit("val_loss"):
            test_data, test_targets = next(test_iter)
            test_output = model(test_data)
            val_loss = loss_fn(test_output, test_targets)
            print("val_loss", val_loss.item())
            u.log_scalar(val_loss=val_loss.item())

        # compute stats
        data, targets = next(stats_iter)
        skip_forward_hooks = False
        skip_backward_hooks = False

        # get gradient values
        with u.timeit("backprop_g"):
            gl.backward_idx = 0
            u.zero_grad(model)
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward(retain_graph=True)

        # get Hessian values
        skip_forward_hooks = True
        id_mat = torch.eye(o).to(gl.device)

        u.log_scalar(loss=loss.item())

        with u.timeit("backprop_H"):
            # optionally use randomized low-rank approximation of Hessian
            hess_rank = args.hess_samples if args.hess_samples else o

            for out_idx in range(hess_rank):
                model.zero_grad()
                # backprop to get section of batch output jacobian for output at position out_idx
                output = model(
                    data
                )  # opt: using autograd.grad means I don't have to zero_grad
                if args.hess_samples:
                    bval = torch.LongTensor(n, o).to(gl.device).random_(
                        0, 2) * 2 - 1
                    bval = bval.float()
                else:
                    ei = id_mat[out_idx]
                    bval = torch.stack([ei] * n)
                gl.backward_idx = out_idx + 1
                output.backward(bval)
            skip_backward_hooks = True  #

        for (i, layer) in enumerate(model.layers):
            s = AttrDefault(str, {})  # dictionary-like object for layer stats

            #############################
            # Gradient stats
            #############################
            A_t = layer.activations
            assert A_t.shape == (n, d[i])

            # add factor of n because backprop takes loss averaged over batch, while we need per-example loss
            B_t = layer.backprops[0] * n
            assert B_t.shape == (n, d[i + 1])

            with u.timeit(f"khatri_g-{i}"):
                G = u.khatri_rao_t(B_t, A_t)  # batch loss Jacobian
            assert G.shape == (n, d[i] * d[i + 1])
            g = G.sum(dim=0, keepdim=True) / n  # average gradient
            assert g.shape == (1, d[i] * d[i + 1])

            if args.autograd_check:
                u.check_close(B_t.t() @ A_t / n, layer.weight.saved_grad)
                u.check_close(g.reshape(d[i + 1], d[i]),
                              layer.weight.saved_grad)

            s.sparsity = torch.sum(layer.output <= 0) / layer.output.numel()
            s.mean_activation = torch.mean(A_t)
            s.mean_backprop = torch.mean(B_t)

            # empirical Fisher
            with u.timeit(f'sigma-{i}'):
                efisher = G.t() @ G / n
                sigma = efisher - g.t() @ g
                s.sigma_l2 = u.sym_l2_norm(sigma)
                s.sigma_erank = torch.trace(sigma) / s.sigma_l2

            #############################
            # Hessian stats
            #############################
            A_t = layer.activations
            Bh_t = [
                layer.backprops[out_idx + 1] for out_idx in range(hess_rank)
            ]
            Amat_t = torch.cat([A_t] * hess_rank, dim=0)
            Bmat_t = torch.cat(Bh_t, dim=0)

            assert Amat_t.shape == (n * hess_rank, d[i])
            assert Bmat_t.shape == (n * hess_rank, d[i + 1])

            lambda_regularizer = args.lmb * torch.eye(d[i] * d[i + 1]).to(
                gl.device)
            with u.timeit(f"khatri_H-{i}"):
                Jb = u.khatri_rao_t(
                    Bmat_t, Amat_t)  # batch Jacobian, in row-vec format

            with u.timeit(f"H-{i}"):
                H = Jb.t() @ Jb / n

            with u.timeit(f"invH-{i}"):
                invH = torch.cholesky_inverse(H + lambda_regularizer)

            with u.timeit(f"H_l2-{i}"):
                s.H_l2 = u.sym_l2_norm(H)
                s.iH_l2 = u.sym_l2_norm(invH)

            with u.timeit(f"norms-{i}"):
                s.H_fro = H.flatten().norm()
                s.iH_fro = invH.flatten().norm()
                s.jacobian_fro = Jb.flatten().norm()
                s.grad_fro = g.flatten().norm()
                s.param_fro = layer.weight.data.flatten().norm()

            u.nan_check(H)
            if args.autograd_check:
                model.zero_grad()
                output = model(data)
                loss = loss_fn(output, targets)
                H_autograd = u.hessian(loss, layer.weight)
                H_autograd = H_autograd.reshape(d[i] * d[i + 1],
                                                d[i] * d[i + 1])
                u.check_close(H, H_autograd)

            #  u.dump(sigma, f'/tmp/sigmas/H-{step}-{i}')
            def loss_direction(dd: torch.Tensor, eps):
                """loss improvement if we take step eps in direction dd"""
                return u.to_python_scalar(eps * (dd @ g.t()) -
                                          0.5 * eps**2 * dd @ H @ dd.t())

            def curv_direction(dd: torch.Tensor):
                """Curvature in direction dd"""
                return u.to_python_scalar(dd @ H @ dd.t() /
                                          (dd.flatten().norm()**2))

            with u.timeit("pinvH"):
                pinvH = u.pinv(H)

            with u.timeit(f'curv-{i}'):
                s.regret_newton = u.to_python_scalar(g @ pinvH @ g.t() / 2)
                s.grad_curv = curv_direction(g)
                ndir = g @ pinvH  # newton direction
                s.newton_curv = curv_direction(ndir)
                setattr(layer.weight, 'pre',
                        pinvH)  # save Newton preconditioner
                s.step_openai = 1 / s.grad_curv if s.grad_curv else 999
                s.step_max = 2 / u.sym_l2_norm(H)
                s.step_min = torch.tensor(2) / torch.trace(H)

                s.newton_fro = ndir.flatten().norm(
                )  # frobenius norm of Newton update
                s.regret_gradient = loss_direction(g, s.step_openai)

            with u.timeit(f'rho-{i}'):
                p_sigma = u.lyapunov_svd(H, sigma)
                if u.has_nan(
                        p_sigma) and args.compute_rho:  # use expensive method
                    H0 = H.cpu().detach().numpy()
                    sigma0 = sigma.cpu().detach().numpy()
                    p_sigma = scipy.linalg.solve_lyapunov(H0, sigma0)
                    p_sigma = torch.tensor(p_sigma).to(gl.device)

                if u.has_nan(p_sigma):
                    s.psigma_erank = H.shape[0]
                    s.rho = 1
                else:
                    s.psigma_erank = u.sym_erank(p_sigma)
                    s.rho = H.shape[0] / s.psigma_erank

            with u.timeit(f"batch-{i}"):
                s.batch_openai = torch.trace(H @ sigma) / (g @ H @ g.t())
                print('openai batch', s.batch_openai)
                s.diversity = torch.norm(G, "fro")**2 / torch.norm(g)**2

                # s.noise_variance = torch.trace(H.inverse() @ sigma)
                # try:
                #     # this fails with singular sigma
                #     s.noise_variance = torch.trace(torch.solve(sigma, H)[0])
                #     # s.noise_variance = torch.trace(torch.lstsq(sigma, H)[0])
                #     pass
                # except RuntimeError as _:
                s.noise_variance_pinv = torch.trace(pinvH @ sigma)

                s.H_erank = torch.trace(H) / s.H_l2
                s.batch_jain_simple = 1 + s.H_erank
                s.batch_jain_full = 1 + s.rho * s.H_erank

            u.log_scalars(u.nest_stats(layer.name, s))

        # gradient steps
        last_inner = 0
        for i in range(args.train_steps):
            if last_inner:
                u.log_scalars(
                    {"time/inner": 1000 * (time.perf_counter() - last_inner)})
            last_inner = time.perf_counter()

            optimizer.zero_grad()
            data, targets = next(train_iter)
            model.zero_grad()
            output = model(data)
            loss = loss_fn(output, targets)
            loss.backward()

            u.log_scalar(train_loss=loss.item())

            if args.method != 'newton':
                optimizer.step()
            else:
                for (layer_idx, layer) in enumerate(model.layers):
                    param: torch.nn.Parameter = layer.weight
                    param_data: torch.Tensor = param.data
                    param_data.copy_(param_data - 0.1 * param.grad)
                    if layer_idx != 1:  # only update 1 layer with Newton, unstable otherwise
                        continue
                    u.nan_check(layer.weight.pre)
                    u.nan_check(param.grad.flatten())
                    u.nan_check(u.v2r(param.grad.flatten()) @ layer.weight.pre)
                    param_new_flat = u.v2r(param_data.flatten()) - u.v2r(
                        param.grad.flatten()) @ layer.weight.pre
                    u.nan_check(param_new_flat)
                    param_data.copy_(param_new_flat.reshape(param_data.shape))

            gl.token_count += data.shape[0]

    gl.event_writer.close()
    def compute_layer_stats(layer):
        stats = AttrDefault(str, {})
        n = stats_batch_size
        param = u.get_param(layer)
        d = len(param.flatten())
        layer_idx = model.layers.index(layer)
        assert layer_idx >= 0
        assert stats_data.shape[0] == n

        def backprop_loss():
            model.zero_grad()
            output = model(
                stats_data)  # use last saved data batch for backprop
            loss = compute_loss(output, stats_targets)
            loss.backward()
            return loss, output

        def backprop_output():
            model.zero_grad()
            output = model(stats_data)
            output.backward(gradient=torch.ones_like(output))
            return output

        # per-example gradients, n, d
        loss, output = backprop_loss()
        At = layer.data_input
        Bt = layer.grad_output * n
        G = u.khatri_rao_t(At, Bt)
        g = G.sum(dim=0, keepdim=True) / n
        u.check_close(g, u.vec(param.grad).t())

        stats.diversity = torch.norm(G, "fro")**2 / g.flatten().norm()**2

        stats.gradient_norm = g.flatten().norm()
        stats.parameter_norm = param.data.flatten().norm()
        pos_activations = torch.sum(layer.data_output > 0)
        neg_activations = torch.sum(layer.data_output <= 0)
        stats.sparsity = pos_activations.float() / (pos_activations +
                                                    neg_activations)

        output = backprop_output()
        At2 = layer.data_input
        u.check_close(At, At2)
        B2t = layer.grad_output
        J = u.khatri_rao_t(At, B2t)
        H = J.t() @ J / n

        model.zero_grad()
        output = model(stats_data)  # use last saved data batch for backprop
        loss = compute_loss(output, stats_targets)
        hess = u.hessian(loss, param)

        hess = hess.transpose(2, 3).transpose(0, 1).reshape(d, d)
        u.check_close(hess, H)
        u.check_close(hess, H)

        stats.hessian_norm = u.l2_norm(H)
        stats.jacobian_norm = u.l2_norm(J)
        Joutput = J.sum(dim=0) / n
        stats.jacobian_sensitivity = Joutput.norm()

        # newton decrement
        stats.loss_newton = u.to_python_scalar(g @ u.pinv(H) @ g.t() / 2)
        u.check_close(stats.loss_newton, loss)

        # do line-search to find optimal step
        def line_search(directionv, start, end, steps=10):
            """Takes steps between start and end, returns steps+1 loss entries"""
            param0 = param.data.clone()
            param0v = u.vec(param0).t()
            losses = []
            for i in range(steps + 1):
                output = model(
                    stats_data)  # use last saved data batch for backprop
                loss = compute_loss(output, stats_targets)
                losses.append(loss)
                offset = start + i * ((end - start) / steps)
                param1v = param0v + offset * directionv

                param1 = u.unvec(param1v.t(), param.data.shape[0])
                param.data.copy_(param1)

            output = model(
                stats_data)  # use last saved data batch for backprop
            loss = compute_loss(output, stats_targets)
            losses.append(loss)

            param.data.copy_(param0)
            return losses

        # try to take a newton step
        gradv = g
        line_losses = line_search(-gradv @ u.pinv(H), 0, 2, steps=10)
        u.check_equal(line_losses[0], loss)
        u.check_equal(line_losses[6], 0)
        assert line_losses[5] > line_losses[6]
        assert line_losses[7] > line_losses[6]
        return stats
Example #12
0
 def kron_curv_direction(dd: torch.Tensor):
     """Curvature in direction dd, using factored form"""
     # dd @ H @ dd.t(), computed by kron_quadratic_form(H, dd)
     return u.to_python_scalar(
         u.kron_quadratic_form(H, dd) / (dd.flatten().norm()**2))