Example #1
0
    def decode(self,
               server,
               block_header,
               target,
               job_id=None,
               extranonce2=None):
        if block_header:
            job = Object()

            binary_data = block_header.decode('hex')
            data0 = list(unpack('<16I', binary_data[:64])) + ([0] * 48)

            job.target = unpack('<8I', target.decode('hex'))
            job.header = binary_data[:68]
            job.merkle_end = uint32(unpack('<I', binary_data[64:68])[0])
            job.time = uint32(unpack('<I', binary_data[68:72])[0])
            job.difficulty = uint32(unpack('<I', binary_data[72:76])[0])
            job.state = sha256(STATE, data0)
            job.targetQ = 2**256 / int(''.join(list(chunks(target, 2))[::-1]),
                                       16)
            job.job_id = job_id
            job.extranonce2 = extranonce2
            job.server = server

            if job.difficulty != self.difficulty:
                self.set_difficulty(job.difficulty)

            return job
Example #2
0
    def decode(self, server, block_header, target, job_id = None, extranonce2 = None):
        if block_header:
            job = Object()

            binary_data = block_header.decode('hex')

            #data0 = list(unpack('<16I', binary_data[:64])) + ([0] * 48)

            job.headerX = binary_data[:76]
            job.dataX = unpack('<19I', job.headerX)
            job.target		= unpack('<8I', target.decode('hex'))
            job.header		= binary_data[:68]
            job.merkle_end	= uint32(unpack('<I', binary_data[64:68])[0])
            job.time		= uint32(unpack('<I', binary_data[68:72])[0])
            job.difficulty	= uint32(unpack('<I', binary_data[72:76])[0])
            # job.state		= sha256(STATE, data0)
            job.targetQ		= 2**256 / int(''.join(list(chunks(target, 2))[::-1]), 16)
            job.job_id		= job_id
            job.extranonce2	= extranonce2
            job.server		= server

            if job.difficulty != self.difficulty:
                self.set_difficulty(job.difficulty)

            return job
Example #3
0
def partial(state, merkle_end, time, difficulty, f):
    state2 = list(state)
    data = [merkle_end, time, difficulty]
    for i in xrange(3):
        (state2[~(i - 4) & 7], state2[~(i - 8) & 7]) = sharound(
            state2[(~(i - 1) & 7)], state2[~(i - 2) & 7], state2[~(i - 3) & 7],
            state2[~(i - 4) & 7], state2[~(i - 5) & 7], state2[~(i - 6) & 7],
            state2[~(i - 7) & 7], state2[~(i - 8) & 7], data[i], K[i])

    f[0] = uint32(data[0] +
                  (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3)))
    f[1] = uint32(data[1] +
                  (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) +
                  0x01100000)
    f[2] = uint32(data[2] + (rotr(f[0], 17) ^ rotr(f[0], 19) ^ (f[0] >> 10)))
    f[3] = uint32(0x11002000 +
                  (rotr(f[1], 17) ^ rotr(f[1], 19) ^ (f[1] >> 10)))
    f[4] = uint32(0x00000280 + (rotr(f[0], 7) ^ rotr(f[0], 18) ^ (f[0] >> 3)))
    f[5] = uint32(f[0] + (rotr(f[1], 7) ^ rotr(f[1], 18) ^ (f[1] >> 3)))
    f[6] = uint32(state[4] + (rotr(state2[1], 6) ^ rotr(state2[1], 11)
                              ^ rotr(state2[1], 25)) +
                  (state2[3] ^ (state2[1] & (state2[2] ^ state2[3]))) +
                  0xe9b5dba5)
    f[7] = uint32(
        (rotr(state2[5], 2) ^ rotr(state2[5], 13) ^ rotr(state2[5], 22)) +
        ((state2[5] & state2[6]) | (state2[7] & (state2[5] | state2[6]))))
    return state2
Example #4
0
def calculateF(state, merkle_end, time, difficulty, f, state2):
		data = [merkle_end, time, difficulty]
		#W2
		f[0] = uint32(data[2])

		#W16
		f[1] = uint32(data[0] + (rotr(data[1], 7) ^ rotr(data[1], 18) ^
			(data[1] >> 3)))
		#W17
		f[2] = uint32(data[1] + (rotr(data[2], 7) ^ rotr(data[2], 18) ^
			(data[2] >> 3)) + 0x01100000)

		#2 parts of the first SHA round
		f[3] = uint32(state[4] + (rotr(state2[1], 6) ^
			rotr(state2[1], 11) ^ rotr(state2[1], 25)) +
			(state2[3] ^ (state2[1] & (state2[2] ^
			state2[3]))) + 0xe9b5dba5)
		f[4] = uint32((rotr(state2[5], 2) ^
			rotr(state2[5], 13) ^ rotr(state2[5], 22)) +
			((state2[5] & state2[6]) | (state2[7] &
			(state2[5] | state2[6]))))
Example #5
0
def calculateF(state, merkle_end, time, difficulty, f, state2):
    data = [merkle_end, time, difficulty]
    #W2
    f[0] = uint32(data[2])

    #W16
    f[1] = uint32(data[0] +
                  (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3)))
    #W17
    f[2] = uint32(data[1] +
                  (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) +
                  0x01100000)

    #2 parts of the first SHA round
    f[3] = uint32(state[4] + (rotr(state2[1], 6) ^ rotr(state2[1], 11)
                              ^ rotr(state2[1], 25)) +
                  (state2[3] ^ (state2[1] & (state2[2] ^ state2[3]))) +
                  0xe9b5dba5)
    f[4] = uint32(
        (rotr(state2[5], 2) ^ rotr(state2[5], 13) ^ rotr(state2[5], 22)) +
        ((state2[5] & state2[6]) | (state2[7] & (state2[5] | state2[6]))))
Example #6
0
def partial(state, merkle_end, time, difficulty, f):
	state2 = list(state)
	data = [merkle_end, time, difficulty]
	for i in xrange(3):
		(state2[~(i-4)&7], state2[~(i-8)&7]) = sharound(state2[(~(i-1)&7)],state2[~(i-2)&7],state2[~(i-3)&7],state2[~(i-4)&7],state2[~(i-5)&7],state2[~(i-6)&7],state2[~(i-7)&7],state2[~(i-8)&7],data[i],K[i])

	f[0] = uint32(data[0] + (rotr(data[1], 7) ^ rotr(data[1], 18) ^ (data[1] >> 3)))
	f[1] = uint32(data[1] + (rotr(data[2], 7) ^ rotr(data[2], 18) ^ (data[2] >> 3)) + 0x01100000)
	f[2] = uint32(data[2] + (rotr(f[0], 17) ^ rotr(f[0], 19) ^ (f[0] >> 10)))
	f[3] = uint32(0x11002000 + (rotr(f[1], 17) ^ rotr(f[1], 19) ^ (f[1] >> 10)))
	f[4] = uint32(0x00000280 + (rotr(f[0], 7) ^ rotr(f[0], 18) ^ (f[0] >> 3)))
	f[5] = uint32(f[0] + (rotr(f[1], 7) ^ rotr(f[1], 18) ^ (f[1] >> 3)))
	f[6] = uint32(state[4] + (rotr(state2[1], 6) ^ rotr(state2[1], 11) ^ rotr(state2[1], 25)) + (state2[3] ^ (state2[1] & (state2[2] ^ state2[3]))) + 0xe9b5dba5)
	f[7] = uint32((rotr(state2[5], 2) ^ rotr(state2[5], 13) ^ rotr(state2[5], 22)) + ((state2[5] & state2[6]) | (state2[7] & (state2[5] | state2[6]))))
	return state2
Example #7
0
def sha256(state, data):
	digest = list(state)
	for i in xrange(64):
		if i > 15:
			data[i] = R(data[i-2], data[i-7], data[i-15], data[i-16])
		(digest[~(i-4)&7], digest[~(i-8)&7]) = sharound(digest[(~(i-1)&7)],digest[~(i-2)&7],digest[~(i-3)&7],digest[~(i-4)&7],digest[~(i-5)&7],digest[~(i-6)&7],digest[~(i-7)&7],digest[~(i-8)&7],data[i],K[i])

	result = []
	result.append(uint32(digest[0] + state[0]))
	result.append(uint32(digest[1] + state[1]))
	result.append(uint32(digest[2] + state[2]))
	result.append(uint32(digest[3] + state[3]))
	result.append(uint32(digest[4] + state[4]))
	result.append(uint32(digest[5] + state[5]))
	result.append(uint32(digest[6] + state[6]))
	result.append(uint32(digest[7] + state[7]))

	return result
Example #8
0
    def put_job(self):
        if self.busy: return

        temperature = self.get_temperature()
        if temperature < self.cutoff_temp:
            response = request(self.device, b'ZDX')
            if self.is_ok(response):
                if self.switch.update_time:
                    self.job.time = bytereverse(
                        uint32(long(time())) - self.job.time_delta)
                data = b''.join([
                    pack('<8I', *self.job.state),
                    pack('<3I', self.job.merkle_end, self.job.time,
                         self.job.difficulty)
                ])
                response = request(self.device,
                                   b''.join([b'>>>>>>>>', data, b'>>>>>>>>']))
                if self.is_ok(response):
                    self.busy = True
                    self.job_started = time()

                    self.last_job = Object()
                    self.last_job.header = self.job.header
                    self.last_job.merkle_end = self.job.merkle_end
                    self.last_job.time = self.job.time
                    self.last_job.difficulty = self.job.difficulty
                    self.last_job.target = self.job.target
                    self.last_job.state = self.job.state
                    self.last_job.job_id = self.job.job_id
                    self.last_job.extranonce2 = self.job.extranonce2
                    self.last_job.server = self.job.server
                    self.last_job.miner = self

                    self.check_interval = CHECK_INTERVAL
                    if not self.switch.update_time or bytereverse(
                            self.job.time) - bytereverse(
                                self.job.original_time) > 55:
                        self.update = True
                        self.job = None
                else:
                    say_line('%s: bad response when sending block data: %s',
                             (self.id(), response))
            else:
                say_line('%s: bad response when submitting job (ZDX): %s',
                         (self.id(), response))
        else:
            say_line('%s: temperature exceeds cutoff, waiting...', self.id())
Example #9
0
def sha256(state, data):
    digest = list(state)
    for i in xrange(64):
        if i > 15:
            data[i] = R(data[i - 2], data[i - 7], data[i - 15], data[i - 16])
        (digest[~(i - 4) & 7], digest[~(i - 8) & 7]) = sharound(
            digest[(~(i - 1) & 7)], digest[~(i - 2) & 7], digest[~(i - 3) & 7],
            digest[~(i - 4) & 7], digest[~(i - 5) & 7], digest[~(i - 6) & 7],
            digest[~(i - 7) & 7], digest[~(i - 8) & 7], data[i], K[i])

    result = []
    result.append(uint32(digest[0] + state[0]))
    result.append(uint32(digest[1] + state[1]))
    result.append(uint32(digest[2] + state[2]))
    result.append(uint32(digest[3] + state[3]))
    result.append(uint32(digest[4] + state[4]))
    result.append(uint32(digest[5] + state[5]))
    result.append(uint32(digest[6] + state[6]))
    result.append(uint32(digest[7] + state[7]))

    return result
Example #10
0
	def put_job(self):
		if self.busy: return

		temperature = self.get_temperature()
		if temperature < self.cutoff_temp:
			response = request(self.device, b'ZDX')
			if self.is_ok(response):
				if self.switch.update_time:
					self.job.time = bytereverse(uint32(long(time())) - self.job.time_delta)
				data = b''.join([pack('<8I', *self.job.state), pack('<3I', self.job.merkle_end, self.job.time, self.job.difficulty)])
				response = request(self.device, b''.join([b'>>>>>>>>', data, b'>>>>>>>>']))
				if self.is_ok(response):
					self.busy = True
					self.job_started = time()

					self.last_job = Object()
					self.last_job.header = self.job.header
					self.last_job.merkle_end = self.job.merkle_end
					self.last_job.time = self.job.time
					self.last_job.difficulty = self.job.difficulty
					self.last_job.target = self.job.target
					self.last_job.state = self.job.state
					self.last_job.job_id = self.job.job_id
					self.last_job.extranonce2 = self.job.extranonce2
					self.last_job.server = self.job.server
					self.last_job.miner = self

					self.check_interval = CHECK_INTERVAL
					if not self.switch.update_time or bytereverse(self.job.time) - bytereverse(self.job.original_time) > 55:
						self.update = True
						self.job = None
				else:
					say_line('%s: bad response when sending block data: %s', (self.id(), response))
			else:
				say_line('%s: bad response when submitting job (ZDX): %s', (self.id(), response))
		else:
			say_line('%s: temperature exceeds cutoff, waiting...', self.id())
Example #11
0
def sharound(a,b,c,d,e,f,g,h,x,K):
	t1=h+(rot(e, 26)^rot(e, 21)^rot(e, 7))+(g^(e&(f^g)))+K+x
	t2=(rot(a, 30)^rot(a, 19)^rot(a, 10))+((a&b)|(c&(a|b)))
	return (uint32(d + t1), uint32(t1+t2))
Example #12
0
def R(x2, x7, x15, x16):
	return uint32((rot(x2,15)^rot(x2,13)^((x2)>>10)) + x7 + (rot(x15,25)^rot(x15,14)^((x15)>>3)) + x16)
Example #13
0
def sharound(a, b, c, d, e, f, g, h, x, K):
    t1 = h + (rot(e, 26) ^ rot(e, 21) ^ rot(e, 7)) + (g ^ (e &
                                                           (f ^ g))) + K + x
    t2 = (rot(a, 30) ^ rot(a, 19) ^ rot(a, 10)) + ((a & b) | (c & (a | b)))
    return (uint32(d + t1), uint32(t1 + t2))
Example #14
0
def R(x2, x7, x15, x16):
    return uint32((rot(x2, 15) ^ rot(x2, 13) ^ ((x2) >> 10)) + x7 +
                  (rot(x15, 25) ^ rot(x15, 14) ^ ((x15) >> 3)) + x16)
Example #15
0
	def mining_thread(self):
		say_line('started BFL miner on %s', (self.id()))

		while not self.should_stop:
			try:
				self.device = open_device(self.port)
				response = init_device(self.device)
				if not is_good_init(response):
					say_line('Failed to initialize %s (response: %s), retrying...', (self.id(), response))
					self.device.close()
					self.device = None
					sleep(1)
					continue

				last_rated = time()
				iterations = 0
		
				self.job = None
				self.busy = False
				while not self.should_stop:
					if (not self.job) or (not self.work_queue.empty()):
						try:
							self.job = self.work_queue.get(True, 1)
						except Empty:
							if not self.busy:
								continue
						else:
							if not self.job and not self.busy:
								continue
							targetQ = self.job.targetQ
							self.job.original_time = self.job.time
							self.job.time_delta = uint32(long(time())) - bytereverse(self.job.time)

					if not self.busy:
						self.put_job()
					else:
						result = self.check_result()
						if result:
							now = time()
							
							self.busy = False
							r = self.last_job
							job_duration = now - self.job_started
							self.put_job()
	
							self.min_interval = min(self.min_interval, job_duration)
	
							iterations += 4294967296
							t = now - last_rated
							if t > self.options.rate:
								self.update_rate(now, iterations, t, targetQ)
								last_rated = now; iterations = 0

							if result != b'NO-NONCE\n':
								r.nonces = result
								self.switch.put(r)

							sleep(self.min_interval - (CHECK_INTERVAL * 2))
						else:
							if result is None:
								self.check_interval = min(self.check_interval * 2, 1)
	
					sleep(self.check_interval)
			except Exception:
				say_exception()
				if self.device:
					self.device.close()
					self.device = None
				sleep(1)
Example #16
0
    def mining_thread(self):
        say_line('started OpenCL miner on platform %d, device %d (%s)', (self.options.platform, self.device_index, self.device_name))

        (self.defines, rate_divisor, hashspace) = ('', 1000, 0xFFFFFFFF)
        self.defines += (' -D%sOUTPUT_SIZE=%s' % (self.defspace, str(self.output_size)))
        self.defines += (' -D%sOUTPUT_MASK=%s' % (self.defspace, str(self.output_size - 1)))
        self.defines += (' -D%sENDIAN_LITTLE=%d' % (self.defspace, self.device.endian_little))
        self.defines += (' -D%sGPU_AMD=%d' % (self.defspace, self.gpu_amd))
        self.defines += (' -I%s%s' % (self.defspace, os.getcwd()))

        say_line("Compiler defines: %s", self.defines)

        self.load_kernel()
        frame = 1.0 / max(self.frames, 3)
        unit = self.worksize * 256
        global_threads = unit * 10

        queue = cl.CommandQueue(self.context)

        last_rated_pace = last_rated = last_n_time = last_temperature = time()
        base = last_hash_rate = threads_run_pace = threads_run = 0
        output = bytearray((self.output_size + 1) * 4)
        output_buffer = cl.Buffer(self.context, cl.mem_flags.WRITE_ONLY | cl.mem_flags.USE_HOST_PTR, hostbuf=output)
        self.kernel.set_arg(12, output_buffer)

        work = None
        temperature = 0
        while True:
            if self.should_stop: return

            sleep(self.frameSleep)

            if (not work) or (not self.work_queue.empty()):
                try:
                    work = self.work_queue.get(True, 1)
                except Empty: continue
                else:
                    if not work: continue

                    nonces_left = hashspace

                    self.queue_kernel_parameters(work)

            if temperature < self.cutoff_temp:
                self.kernel.set_arg(11, pack('<I', base))
                cl.enqueue_nd_range_kernel(queue, self.kernel, (global_threads,), (self.worksize,))

                nonces_left -= global_threads
                threads_run_pace += global_threads
                threads_run += global_threads
                base = uint32(base + global_threads)
            else:
                threads_run_pace = 0
                last_rated_pace = time()
                sleep(self.cutoff_interval)

            now = time()
            if self.adapterIndex is not None:
                t = now - last_temperature
                if temperature >= self.cutoff_temp or t > 1:
                    last_temperature = now
                    with adl_lock:
                        self.temperature = self.get_temperature()
                        temperature = self.temperature

            t = now - last_rated_pace
            if t > 1:
                rate = (threads_run_pace / t) / rate_divisor
                last_rated_pace = now; threads_run_pace = 0
                r = last_hash_rate / rate
                if r < 0.9 or r > 1.1:
                    global_threads = max(unit * int((rate * frame * rate_divisor) / unit), unit)
                    last_hash_rate = rate

            t = now - last_rated
            if t > self.options.rate:
                self.update_rate(now, threads_run, t, work.targetQ, rate_divisor)
                last_rated = now; threads_run = 0

            queue.finish()
            cl.enqueue_read_buffer(queue, output_buffer, output)
            queue.finish()

            if output[-1]:
                result = Object()
                result.header = work.header
                result.headerX = work.headerX
                result.merkle_end = work.merkle_end
                result.time = work.time
                result.difficulty = work.difficulty
                result.target = work.target
                result.dataX = work.dataX[:]
                result.nonces = output[:]
                result.job_id = work.job_id
                result.extranonce2 = work.extranonce2
                result.server = work.server
                result.miner = self
                self.switch.put(result)
                output[:] = b'\x00' * len(output)
                cl.enqueue_write_buffer(queue, output_buffer, output)

                for miner in self.switch.miners:
                    miner.update = True

            if not self.switch.update_time:
                if nonces_left < 6 * global_threads * self.frames:
                    self.update = True
                    nonces_left += 0xFFFFFFFFFFFF
                elif 0xFFFFFFFFFFF < nonces_left < 0xFFFFFFFFFFFF:
                    say_line('warning: job finished, %s is idle', self.id())
                    work = None
            elif now - last_n_time > 1:
                last_n_time = now
                self.update_time_counter += 1
                if self.update_time_counter >= self.switch.max_update_time:
                    self.update = True
                    self.update_time_counter = 1
Example #17
0
	def mining_thread(self):
		say_line('started OpenCL miner on platform %d, device %d (%s)', (self.options.platform, self.device_index, self.device_name))

		(self.defines, rate_divisor, hashspace) = if_else(self.vectors, ('-DVECTORS', 500, 0x7FFFFFFF), ('', 1000, 0xFFFFFFFF))
		self.defines += (' -DOUTPUT_SIZE=' + str(self.output_size))
		self.defines += (' -DOUTPUT_MASK=' + str(self.output_size - 1))

		self.load_kernel()
		frame = 1.0 / max(self.frames, 3)
		unit = self.worksize * 256
		global_threads = unit * 10

		queue = cl.CommandQueue(self.context)

		last_rated_pace = last_rated = last_n_time = last_temperature = time()
		base = last_hash_rate = threads_run_pace = threads_run = 0
		output = np.zeros(self.output_size + 1, np.uint32)
		output_buffer = cl.Buffer(self.context, cl.mem_flags.WRITE_ONLY | cl.mem_flags.USE_HOST_PTR, hostbuf=output)
		self.kernel.set_arg(20, output_buffer)

		work = None
		temperature = 0
		while True:
			if self.should_stop: return

			sleep(self.frameSleep)

			if (not work) or (not self.work_queue.empty()):
				try:
					work = self.work_queue.get(True, 1)
				except Empty: continue
				else:
					if not work: continue
					nonces_left = hashspace
					state = work.state
					state2 = work.state2
					f = work.f

					self.kernel.set_arg(0, state[0])
					self.kernel.set_arg(1, state[1])
					self.kernel.set_arg(2, state[2])
					self.kernel.set_arg(3, state[3])
					self.kernel.set_arg(4, state[4])
					self.kernel.set_arg(5, state[5])
					self.kernel.set_arg(6, state[6])
					self.kernel.set_arg(7, state[7])

					self.kernel.set_arg(8, state2[1])
					self.kernel.set_arg(9, state2[2])
					self.kernel.set_arg(10, state2[3])
					self.kernel.set_arg(11, state2[5])
					self.kernel.set_arg(12, state2[6])
					self.kernel.set_arg(13, state2[7])

					self.kernel.set_arg(15, f[0])
					self.kernel.set_arg(16, f[1])
					self.kernel.set_arg(17, f[2])
					self.kernel.set_arg(18, f[3])
					self.kernel.set_arg(19, f[4])

			if temperature < self.cutoff_temp:
				self.kernel.set_arg(14, pack('I', base))
				cl.enqueue_nd_range_kernel(queue, self.kernel, (global_threads,), (self.worksize,))

				nonces_left -= global_threads
				threads_run_pace += global_threads
				threads_run += global_threads
				base = uint32(base + global_threads)
			else:
				threads_run_pace = 0
				last_rated_pace = time()
				sleep(self.cutoff_interval)

			now = time()
			if self.adapterIndex != None:
				t = now - last_temperature
				if temperature >= self.cutoff_temp or t > 1:
					last_temperature = now
					with adl_lock:
						temperature = self.get_temperature()

			t = now - last_rated_pace
			if t > 1:
				rate = (threads_run_pace / t) / rate_divisor
				last_rated_pace = now; threads_run_pace = 0
				r = last_hash_rate / rate
				if r < 0.9 or r > 1.1:
					global_threads = max(unit * int((rate * frame * rate_divisor) / unit), unit)
					last_hash_rate = rate

			t = now - last_rated
			if t > self.options.rate:
				self.update_rate(now, threads_run, t, work.targetQ, rate_divisor)
				last_rated = now; threads_run = 0

			queue.finish()
			cl.enqueue_read_buffer(queue, output_buffer, output)
			queue.finish()

			if output[self.output_size]:
				result = Object()
				result.header = work.header
				result.merkle_end = work.merkle_end
				result.time = work.time
				result.difficulty = work.difficulty
				result.target = work.target
				result.state = np.array(state)
				result.nonces = np.array(output)
				result.job_id = work.job_id
				result.extranonce2 = work.extranonce2
				result.server = work.server
				result.miner = self
				self.switch.put(result)
				output.fill(0)
				cl.enqueue_write_buffer(queue, output_buffer, output)

			if not self.switch.update_time:
				if nonces_left < 3 * global_threads * self.frames:
					self.update = True
					nonces_left += 0xFFFFFFFFFFFF
				elif 0xFFFFFFFFFFF < nonces_left < 0xFFFFFFFFFFFF:
					say_line('warning: job finished, %s is idle', self.id()) 
					work = None
			elif now - last_n_time > 1:
				work.time = bytereverse(bytereverse(work.time) + 1)
				state2 = partial(state, work.merkle_end, work.time, work.difficulty, f)
				calculateF(state, work.merkle_end, work.time, work.difficulty, f, state2)
				self.kernel.set_arg(8, state2[1])
				self.kernel.set_arg(9, state2[2])
				self.kernel.set_arg(10, state2[3])
				self.kernel.set_arg(11, state2[5])
				self.kernel.set_arg(12, state2[6])
				self.kernel.set_arg(13, state2[7])
				self.kernel.set_arg(15, f[0])
				self.kernel.set_arg(16, f[1])
				self.kernel.set_arg(17, f[2])
				self.kernel.set_arg(18, f[3])
				self.kernel.set_arg(19, f[4])
				last_n_time = now
				self.update_time_counter += 1
				if self.update_time_counter >= self.switch.max_update_time:
					self.update = True
					self.update_time_counter = 1
Example #18
0
    def mining_thread(self):
        say_line('started BFL miner on %s', (self.id()))

        while not self.should_stop:
            try:
                self.device = open_device(self.port)
                response = init_device(self.device)
                if not is_good_init(response):
                    say_line(
                        'Failed to initialize %s (response: %s), retrying...',
                        (self.id(), response))
                    self.device.close()
                    self.device = None
                    sleep(1)
                    continue

                last_rated = time()
                iterations = 0

                self.job = None
                self.busy = False
                while not self.should_stop:
                    if (not self.job) or (not self.work_queue.empty()):
                        try:
                            self.job = self.work_queue.get(True, 1)
                        except Empty:
                            if not self.busy:
                                continue
                        else:
                            if not self.job and not self.busy:
                                continue
                            targetQ = self.job.targetQ
                            self.job.original_time = self.job.time
                            self.job.time_delta = uint32(long(
                                time())) - bytereverse(self.job.time)

                    if not self.busy:
                        self.put_job()
                    else:
                        result = self.check_result()
                        if result:
                            now = time()

                            self.busy = False
                            r = self.last_job
                            job_duration = now - self.job_started
                            self.put_job()

                            self.min_interval = min(self.min_interval,
                                                    job_duration)

                            iterations += 4294967296
                            t = now - last_rated
                            if t > self.options.rate:
                                self.update_rate(now, iterations, t, targetQ)
                                last_rated = now
                                iterations = 0

                            if result != b'NO-NONCE\n':
                                r.nonces = result
                                self.switch.put(r)

                            sleep(self.min_interval - (CHECK_INTERVAL * 2))
                        else:
                            if result is None:
                                self.check_interval = min(
                                    self.check_interval * 2, 1)

                    sleep(self.check_interval)
            except Exception:
                say_exception()
                if self.device:
                    self.device.close()
                    self.device = None
                sleep(1)