remote_base = os.getenv("RANGL_ENVIRONMENT_URL", "http://localhost:5000/") client = Client(remote_base) env_id = "reference-environment-v0" seed = int(os.getenv("RANGL_SEED", 123456)) instance_id = client.env_create(env_id, seed) client.env_monitor_start( instance_id, directory=f"monitor/{instance_id}", force=True, resume=False, video_callable=False, ) client.env_reset(instance_id) while True: action = client.env_action_space_sample(instance_id) observation, reward, done, info = client.env_step(instance_id, action) print(instance_id, reward) if done: print(instance_id) break client.env_monitor_close(instance_id) print("done", done) # make sure you print the instance_id as the last line in the script print(instance_id)
env_id = "reference-environment-v0" seed = int(os.getenv("RANGL_SEED", 123456)) instance_id = client.env_create(env_id, seed) client.env_monitor_start( instance_id, directory=f"monitor/{instance_id}", force=True, resume=False, video_callable=False, ) model = DDPG.load("MODEL_ALPHA_GENERATION.zip") observation = client.env_reset(instance_id) print(observation) import numpy as np def ObservationTransform(obs, H, transform, steps_per_episode=int(96)): step_count, generator_1_level, generator_2_level = obs[:3] agent_prediction = np.array(obs[3:]) agent_horizon_prediction = agent_prediction[-1] * np.ones( steps_per_episode) agent_horizon_prediction[:int(steps_per_episode - step_count)] = agent_prediction[int( step_count):] # inclusive index