Example #1
0
def initialize(args):
    sys.setrecursionlimit(10000)
    lg = rdkit.RDLogger.logger()
    lg.setLevel(rdkit.RDLogger.CRITICAL)

    torch.manual_seed(args.seed)
    torch.cuda.set_device(args.device)

    arg_info = '_%s_LR_%f_HS_%d_RS_%d_AR_%.2f_AI_%d_%s' % (
        args.task_tag, args.lr, args.hidden_size, args.rand_size,
        args.anneal_rate, args.anneal_interval,
        'share_embedding' if args.share_embedding else 'not_share_embedding')
    LOG.init(file_name=current_time + '_' + arg_info)
    logger = logging.getLogger('logger')
    logger.info(args)

    # create the tensorboard log saved folder
    if not os.path.isdir(args.tensorboard_save_dir):
        os.makedirs(args.tensorboard_save_dir)
    # set the tensorboard writer
    train_tb_log_dir = os.path.join(args.tensorboard_save_dir,
                                    current_time + '_' + arg_info + '_train')
    tb_suffix = '_' + arg_info
    train_writer = SummaryWriter(log_dir=train_tb_log_dir,
                                 filename_suffix=tb_suffix)

    # create the model saved folder
    if args.model_save_dir is not None:
        # args.model_save_dir = os.path.join(args.model_save_dir, current_time + '_' + arg_info)
        args.model_save_dir = os.path.join(args.model_save_dir,
                                           f'{args.task_tag}')
        if not os.path.isdir(args.model_save_dir):
            os.makedirs(args.model_save_dir)
    # save the model config
    with open(os.path.join(args.model_save_dir, 'model_config.json'),
              'w') as f:
        json.dump(
            {
                'vocab': args.vocab,
                'hidden_size': args.hidden_size,
                'rand_size': args.rand_size,
                'share_embedding': args.share_embedding,
                'use_molatt': args.use_molatt,
                'depthT': args.depthT,
                'depthG': args.depthG
            }, f)

    return logger, train_writer
Example #2
0
def initialize(args):
    current_time = '{:%Y-%m-%d-%H-%M-%S}'.format(datetime.now())
    sys.setrecursionlimit(10000)
    lg = rdkit.RDLogger.logger()
    lg.setLevel(rdkit.RDLogger.CRITICAL)

    arg_info = '%s_%s_HS_%d_RS_%d' % (
        args.task_tag,
        args.metric_type,
        args.hidden_size,
        args.rand_size
    )
    LOG.init(file_name=current_time + '_Evaluation' + '_' + arg_info)
    logger = logging.getLogger('logger')
    logger.info(args)

    torch.cuda.set_device(args.device)
    torch.manual_seed(args.seed)

    return logger