Example #1
0
def is_circular_prime(number):
    """if number is a circular prime, return True, else False.
    >>> is_circular_prime(37)
    True
    >>> is_circular_prime(197)
    True
    >>> is_circular_prime(101)
    False
    >>> is_circular_prime(123)
    False
    """
    num_string = str(number)
    for i in range(len(num_string)):
        if not util_euler.is_prime(int(num_string)):
            return False
        num_string = rotate(num_string)
    return True
Example #2
0
def sum_of_primes_below(n):
    sum_primes = 2
    for i in range(3, n, 2):
        if is_prime(i):
            sum_primes += i
    return sum_primes
Example #3
0
import util_euler

if __name__ == "__main__":
    truncatable_primes = []
    number = 10
    while True:
        number += 1
        if all(util_euler.is_prime(int(str(number)[i:])) for i in range(len(str(number)))):
            if all(util_euler.is_prime(int(str(number)[:-i])) for i in range(1,len(str(number)))):
                truncatable_primes.append(number)
                print(truncatable_primes)
        if len(truncatable_primes) == 11:
            break
    print("sum of truncatable primes is {0}".format(sum(truncatable_primes)))
Example #4
0
import util_euler

if __name__ == "__main__":
    LIMIT = 999
    A = 0
    B = 0
    MAX_N = 0
    for a in range(-LIMIT, LIMIT + 1):
        for b in range(-LIMIT, LIMIT + 1):
            n = 0
            consecutive_prime_count = 0
            while True:
                formula = n * n + a * n + b
                if not util_euler.is_prime(formula):
                    break
                consecutive_prime_count += 1
                n += 1
            if consecutive_prime_count > MAX_N:
                A, B, MAX_N = a, b, consecutive_prime_count
    print("a:{0} b:{1} max_n:{2}".format(A, B, MAX_N))
    print("answer:{0}".format(A * B))
Example #5
0
import util_euler

if __name__ == "__main__":
    count = 0
    numbers_on_diagonal = 1
    primes_on_diagonal = 0
    number = 1
    layer = 1
    while True:
        number += 2 * layer
        count += 1
        if util_euler.is_prime(number):
            primes_on_diagonal += 1
        numbers_on_diagonal += 1
        if count % 4 == 0:
            if primes_on_diagonal / numbers_on_diagonal < 0.1:
                side_length = 2 * layer + 1
                break
            count = 0
            layer += 1
    print("answer: {0}".format(side_length))
Example #6
0
import util_euler
from math import sqrt

if __name__ == "__main__":
    number = 3
    while True:
        odd_divisors = util_euler.find_divisors(number, proper=True)
        odd_divisors.remove(1)
        for d in odd_divisors:
            if d % 2 == 0:
                odd_divisors.remove(d)
        if not all((number / d) % 2 == 0 for d in odd_divisors):
            if all(not util_euler.is_prime(number - (i ** 2) * 2) for i in range(int(sqrt(number)))):
                answer = number
                break
        number += 2
    print("answer: {0}".format(answer))