def test(self, test_data, numClass): numSample = test_data.shape[0] self.flow = [test_data[:,1:]] for i in range(0, len(self.architecture)): self.flow.append(1 / ( 1 + np.exp(-np.dot(self.flow[i], self.architecture[i][0]) - np.matlib.repmat(self.architecture[i][1], numSample, 1)))) predictMat = getPrediction(self.flow[-1]) labelMat = oneOfK(test_data[:,0],numClass) #Compute presicion predictionAnalysis(predictMat, labelMat)
def predict(self, data, numClass): self.flow = [data[:,1:]] for i in range(0, len(self.architecture)): self.flow.append(1 / ( 1 + np.exp(-np.dot(self.flow[-1], self.architecture[i][0]) - np.matlib.repmat(self.architecture[i][1], numSample, 1)))) return getPrediction(self.flow[-1])