def WHEREDataTransformation(filename): global problem_name, percent_name, repeat_name cluster_file_name = "./Cluster_Data/" + str(problem_name) + "_" + str(percent_name) + "_" + str(repeat_name) + ".txt" # import pdb # pdb.set_trace() if os.path.isfile(cluster_file_name) is True: print "LOADED FROM THE FILE: ", cluster_file_name import pickle cluster_table = pickle.load(open(cluster_file_name, "rb")) return cluster_table from utilities.Tools.methods1 import wrapper_createTbl # The Data has to be access using this attribute table._rows.cells transformed_table = [[int(z) for z in x.cells[:-1]] + x.cells[-1:] for x in wrapper_createTbl(filename)._rows] cluster_numbers = set(map(lambda x: x[-1], transformed_table)) #debug dict = {} for line in transformed_table: if line[-1] in dict.keys(): dict[line[-1]] += 1 else: dict[line[-1]] = 1 # separating clusters # the element looks like [clusterno, rows] cluster_table = [] for number in cluster_numbers: cluster_table.append([number]+ [filter(lambda x: x[-1] == number, transformed_table)]) import pickle pickle.dump(cluster_table, open(cluster_file_name, "wb")) return cluster_table
def WHEREDataTransformation(filename): from utilities.Tools.methods1 import wrapper_createTbl # The Data has to be access using this attribute table._rows.cells transformed_table = [[int(z) for z in x.cells[:-1]] + x.cells[-1:] for x in wrapper_createTbl(filename)._rows] cluster_numbers = set(map(lambda x: x[-1], transformed_table)) # separating clusters # the element looks like [clusterno, rows] cluster_table = [] for number in cluster_numbers: cluster_table.append([number] + [filter(lambda x: x[-1] == number, transformed_table)]) return cluster_table
def where_clusterer(filename): """ This is function accepts a file with rows(=records) and clusters it. This is FASTNAP + PCA :param filename: Pass in the filename with rows as valid configurations :return: List of Cluster. Each cluster has a [[cluster_number], [list of members]] """ from utilities.Tools.methods1 import wrapper_createTbl # The Data has to be access using this attribute table._rows.cells transformed_table = [[int(z) for z in x.cells[:-1]] + x.cells[-1:] for x in wrapper_createTbl(filename)._rows] cluster_numbers = set(map(lambda x: x[-1], transformed_table)) # separating clusters # the element looks like [clusterno, rows] cluster_table = [] for number in cluster_numbers: cluster_table.append([number] + [filter(lambda x: x[-1] == number, transformed_table)]) return cluster_table
def where_clusterer(filename): """ This is function accepts a file with rows(=records) and clusters it. This is FASTNAP + PCA :param filename: Pass in the filename with rows as valid configurations :return: List of Cluster. Each cluster has a [[cluster_number], [list of members]] """ from utilities.Tools.methods1 import wrapper_createTbl # The Data has to be access using this attribute table._rows.cells transformed_table = [[int(z) for z in x.cells[:-1]] + x.cells[-1:] for x in wrapper_createTbl(filename)._rows] cluster_numbers = set(map(lambda x: x[-1], transformed_table)) # separating clusters # the element looks like [clusterno, rows] cluster_table = [] for number in cluster_numbers: cluster_table.append( [number] + [filter(lambda x: x[-1] == number, transformed_table)]) return cluster_table
def WHEREDataTransformation(filename): global problem_name, percent_name, repeat_name cluster_file_name = "./Cluster_Data/" + str(problem_name) + "_" + str( percent_name) + "_" + str(repeat_name) + ".txt" # import pdb # pdb.set_trace() if os.path.isfile(cluster_file_name) is True: print "LOADED FROM THE FILE: ", cluster_file_name import pickle cluster_table = pickle.load(open(cluster_file_name, "rb")) return cluster_table from utilities.Tools.methods1 import wrapper_createTbl # The Data has to be access using this attribute table._rows.cells transformed_table = [[int(z) for z in x.cells[:-1]] + x.cells[-1:] for x in wrapper_createTbl(filename)._rows] cluster_numbers = set(map(lambda x: x[-1], transformed_table)) #debug dict = {} for line in transformed_table: if line[-1] in dict.keys(): dict[line[-1]] += 1 else: dict[line[-1]] = 1 # separating clusters # the element looks like [clusterno, rows] cluster_table = [] for number in cluster_numbers: cluster_table.append( [number] + [filter(lambda x: x[-1] == number, transformed_table)]) import pickle pickle.dump(cluster_table, open(cluster_file_name, "wb")) return cluster_table