def create_layer(self, input, include_w_input=None, is_training=True, center=False, dp_rate=0.0, **kwargs):
        print("name: {}".format(self.name))
        if self.add_to_input:
            input = tf.add(input, include_w_input)
        if self.concat_to_input:
            input = tf.concat([input, include_w_input],axis=-1)
        self.input_shape = get_incoming_shape(input)
        print(self.input_shape)
        number_of_input_channels = self.input_shape[3]
        self.number_of_input_channels = number_of_input_channels
        with tf.variable_scope('conv', reuse=False):
            initializer = None
            if self.weight_init == 'He':
                initializer = tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False)
            elif self.weight_init == 'Xnormal':
                initializer = tf.contrib.layers.xavier_initializer(uniform=False, seed=None)
            W = tf.get_variable(('W{}'.format(self.name)), shape=(self.kernel_size, self.kernel_size,
                                                                       number_of_input_channels, self.output_channels),
                                initializer=initializer)
            b = tf.Variable(tf.zeros([self.output_channels]))
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, W)
        output = tf.nn.atrous_conv2d(input, W, rate=self.dilation, padding='SAME')
        output = self.apply_dropout(output, dp_rate, is_training)

        # apply batch-norm
        if self.batch_norm:
            print("apply batch norm")
            output = tf.contrib.layers.batch_norm(output, is_training=is_training)

        output = tf.add(tf.contrib.layers.batch_norm(output), b)
        output = self.get_act_values(output)
        output = self.zero_center_output(output, center)
        return output
 def create_layer(self, input, **kwargs):
     print("name: {}".format(self.name))
     self.input_shape = get_incoming_shape(input)
     print(self.input_shape)
     number_of_input_channels = self.input_shape[3]
     self.number_of_input_channels = number_of_input_channels
     with tf.variable_scope('dfconv', reuse=False):
         if self.weight_init == 'He':
             self.weight_init = tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False)
         elif self.weight_init == 'Xnormal':
             self.weight_init = tf.contrib.layers.xavier_initializer(uniform=False, seed=None)
     #tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, W)
     output = tl.layers.DeformableConv2d(net, self.prev_layer, self.offset_layer, self.n_filter, self.filter_size, self.act_fn, self.name, self.weight_init)
     output = self.get_act_values(output)
     return output
    def create_layer(self, input):
        self.input_shape = get_incoming_shape(input)
        print(self.input_shape)
        number_of_input_channels = self.input_shape[3]
        self.number_of_input_channels = number_of_input_channels
        with tf.variable_scope('conv', reuse=False):
            W = tf.get_variable(('W{}'.format(self.name[-3:])),shape=(self.kernel_size, self.kernel_size,
                                                                         number_of_input_channels,
                                                                         self.output_channels))
            b = tf.Variable(tf.zeros([self.output_channels]))
        #self.encoder_matrix = W
        Conv2d.layer_index += 1

        output = tf.nn.atrous_conv2d(input, W, rate=self.dilation, padding='SAME')
        output = lrelu(tf.add(tf.contrib.layers.batch_norm(output), b))

        return output
    def create_layer(self,
                     input,
                     include_w_input=None,
                     pooling_method="MAX",
                     unpooling_method="nearest_neighbor",
                     center=False,
                     **kwargs):
        print("name: {}".format(self.name))
        self.input_shape = get_incoming_shape(input)
        print(self.input_shape)

        if self.add_to_input:
            input = tf.add(input, include_w_input)
        if self.concat_to_input:
            input = tf.concat([input, include_w_input], axis=-1)

        output = self.apply_pool(input,
                                 self.kernel_size,
                                 pooling_method=pooling_method,
                                 unpooling_method=unpooling_method)
        output = self.zero_center_output(output, center)
        return output
Example #5
0
 def create_layer(self, input):
     self.input_shape = get_incoming_shape(input)
     print(self.input_shape)
     return max_pool_2d(input, self.kernel_size)