Example #1
0
    def forward(self, X):
        out1 = self.net1(X)
        out2 = self.net2(X)

        out = grouped_conv(out1, out2)

        return self.fc(out)
Example #2
0
    def forward(self, X):
        out1 = self.features_net(X)
        out2 = self.features_net(X)

        out = grouped_conv(out1, out2)

        return self.fc(out)
Example #3
0
    def forward(self, X):
        out1 = self.features_net(X)
        out2 = self.filters_net(X)

        out = grouped_conv(out1, out2)
        out = self.bn(out.view(out2.shape[0], 64, 6, 6)).view(out2.shape[0], -1)
        out = self.fc(out)
        return out
Example #4
0
    def forward(self, X):

        out1 = self.features_net(X)
        out2 = self.filters_net(X)

        out = grouped_conv(out1, out2)
        out = self.bn(out.view(out2.shape[0], -1, out.shape[2],
                               out.shape[3]))  # Batchnorm and relu

        return self.fc(out.view(out2.shape[0], -1))
Example #5
0
 def forward(self, X):
     """
     Forward Prop
     :param X: Input dataset with batch dimension
     :return: Output of model and parameters
     """
     out1 = self.net1(X)
     out2 = self.net2(X)
     out = grouped_conv(out1, out2)
     out = self.bn(out.view(out2.shape[0], -1, out.shape[2], out.shape[3]))  # Batchnorm and relu
     out = self.fc(out.view(out2.shape[0], -1))
     return out
Example #6
0
    def forward(self, X):
        """
        Forward Prop
        :param X: Input dataset with batch dimension
        :return: Output of model and parameters
        """
        out1 = self.net1(X)
        out2 = self.net2(X)

        out3 = grouped_conv(out1, out2)

        out3 = self.fc(out3)
        return out3