def forward(self, X): out1 = self.net1(X) out2 = self.net2(X) out = grouped_conv(out1, out2) return self.fc(out)
def forward(self, X): out1 = self.features_net(X) out2 = self.features_net(X) out = grouped_conv(out1, out2) return self.fc(out)
def forward(self, X): out1 = self.features_net(X) out2 = self.filters_net(X) out = grouped_conv(out1, out2) out = self.bn(out.view(out2.shape[0], 64, 6, 6)).view(out2.shape[0], -1) out = self.fc(out) return out
def forward(self, X): out1 = self.features_net(X) out2 = self.filters_net(X) out = grouped_conv(out1, out2) out = self.bn(out.view(out2.shape[0], -1, out.shape[2], out.shape[3])) # Batchnorm and relu return self.fc(out.view(out2.shape[0], -1))
def forward(self, X): """ Forward Prop :param X: Input dataset with batch dimension :return: Output of model and parameters """ out1 = self.net1(X) out2 = self.net2(X) out = grouped_conv(out1, out2) out = self.bn(out.view(out2.shape[0], -1, out.shape[2], out.shape[3])) # Batchnorm and relu out = self.fc(out.view(out2.shape[0], -1)) return out
def forward(self, X): """ Forward Prop :param X: Input dataset with batch dimension :return: Output of model and parameters """ out1 = self.net1(X) out2 = self.net2(X) out3 = grouped_conv(out1, out2) out3 = self.fc(out3) return out3