Example #1
0
def task_features():
    """Step 2: Generate features (=fMRI regressors) from raw_features (csv file with 3 columns onset-amplitude-duration) by convolution with an hrf kernel."""
    input_data_type = 'raw-features'
    output_data_type = 'features'
    extension = '.csv'
    source = 'fMRI'

    for language in languages:
        for model in models:
            output_parent_folder = get_output_parent_folder(
                source, output_data_type, language, model)
            input_parent_folder = get_output_parent_folder(
                source, input_data_type, language, model)
            dependencies = [
                get_path2output(input_parent_folder, input_data_type, language,
                                model, run_name, extension)
                for run_name in run_names
            ]
            targets = [
                get_path2output(output_parent_folder, output_data_type,
                                language, model, run_name, extension)
                for run_name in run_names
            ]
            yield {
                'name':
                model,
                'file_dep': ['features.py'] + dependencies,
                'targets':
                targets,
                'actions': [
                    'python features.py --tr {} --language {} --model {} '.
                    format(tr, language, model) + optional + optional_parallel
                ],
            }
Example #2
0
def task_design_matrices():
    """Step 3: Generate design matrices from features in a given language."""
    input_data_type = 'features'
    output_data_type = 'design-matrices'
    extension = '.csv'
    source = 'fMRI'

    for language in languages:
        for models in aggregated_models:
            output_parent_folder = get_output_parent_folder(
                source, output_data_type, language, models)
            dependencies = []
            for model in models.split('+'):
                input_parent_folder = get_output_parent_folder(
                    source, input_data_type, language, model)
                dependencies += [
                    get_path2output(input_parent_folder, input_data_type,
                                    language, model, run_name, extension)
                    for run_name in run_names
                ]
            targets = [
                get_path2output(output_parent_folder, output_data_type,
                                language, models, run_name, extension)
                for run_name in run_names
            ]
            yield {
                'name':
                models,
                'file_dep': ['design-matrices.py'] + dependencies,
                'targets':
                targets,
                'actions': [
                    'python design-matrices.py --language {} --models {} '.
                    format(language, ' '.join(models.split('+'))) + optional
                ],
            }
Example #3
0
def task_raw_features():
    """Step 1: Generate raw features from raw data (text, wave) model predictions."""
    extension = '.csv'
    output_data_type = 'raw-features'
    source = 'fMRI'

    for language in languages:
        for model in models:
            if model.split('_')[0] in ['rms', 'f0', 'mfcc']:
                input_data_type = 'wave'
                extension_input = '.wav'
            else:
                input_data_type = 'text'
                extension_input = '.txt'
            input_parent_folder = join(
                paths.path2data,
                '{0}/{1}/{2}'.format(input_data_type, language,
                                     params.get_category(model)))
            dependencies = [
                join(
                    input_parent_folder, '{0}_{1}_{2}_{3}'.format(
                        input_data_type, language, params.get_category(model),
                        run_name) + extension_input) for run_name in run_names
            ]
            output_parent_folder = get_output_parent_folder(
                source, output_data_type, language, model)
            targets = [
                get_path2output(output_parent_folder, output_data_type,
                                language, model, run_name, extension)
                for run_name in run_names
            ]
            yield {
                'name':
                model,
                'file_dep': ['raw_features.py'] + dependencies,
                'targets':
                targets,
                'actions': [
                    'python raw_features.py --language {} --model_name {} --model_category {} '
                    .format(language, model, params.get_category(model)) +
                    optional + optional_parallel
                ],
            }
Example #4
0
                        action='store_true',
                        help="Precise if we overwrite existing files")
    parser.add_argument("--parallel",
                        default=False,
                        action='store_true',
                        help="Precise if we want to run code in parallel")

    args = parser.parse_args()

    input_data_type = 'raw-features'
    output_data_type = 'features'
    extension = '.csv'
    source = 'fMRI'
    model = args.model

    output_parent_folder = get_output_parent_folder(source, output_data_type,
                                                    args.language, model)
    check_folder(
        output_parent_folder
    )  # check if the output_parent_folder exists and create it if not

    raw_features = get_data(args.language,
                            input_data_type,
                            model=model,
                            source='fMRI')

    if not args.parallel:
        for i, run in enumerate(raw_features):
            compute_features(run, output_parent_folder, output_data_type,
                             args.language, model, extension, args.tr,
                             args.overwrite)
    else: