Example #1
0
    def train(self, reader, doBalanceLabels):

        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets

        [self.trainData,
         self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers,
                                                  onsets, finOnsets,
                                                  self.params)

        if (doBalanceLabels):
            [self.trainData,
             self.labels] = utilities.balance_labels(self.trainData,
                                                     self.labels)

        numChannels = self.trainData.shape[1]
        numSamples = self.trainData.shape[0]
        fvecLen = len(self.params.channelSelect)
        fVecs = np.zeros((numSamples, fvecLen))
        for k in range(numSamples):
            #print("Fvec: " + str(k) + " of " + str(numSamples))
            for i in range(fvecLen):
                sample = np.squeeze(self.trainData[k, i, :])
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                specVal = np.mean(utilities.get1DFeatures(
                    sample, self.params))  #!!!!!!!
                fVecs[k, i] = specVal
        #Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :]
        labels = self.labels[inds]
        self.trainResult.mean = np.mean(fVecs, 0)
        self.trainResult.std = np.std(fVecs, 0)
        #Norm!

        for i in range(fVecs.shape[0]):
            fVecs[i, :] = (fVecs[i, :] -
                           self.trainResult.mean) / self.trainResult.std
        fTransformed = fVecs
        # PCA!
        if self.params.usePCA:
            pcaTransform = PCA(self.params.numPC)
            pcaTransform.fit(fVecs)
            self.trainResult.pcaOp = pcaTransform
            fTransformed = pcaTransform.transform(fVecs)
        #LDA!
        if not (self.params.finalClassifier is None):
            [Op, fTransformed
             ] = utilities.trainClassifier(self.params.finalClassifier,
                                           fTransformed, labels)
            self.trainResult.finalOp = Op
        if not (self.params.distanceFun is None):
            self.trainResult.trainTransformedVecs = fTransformed
        self.trainResult.trainLabels = labels
Example #2
0
    def train(self,trainFiles,triggers,onsets,finOnsets, doBalanceLabels):
        [self.trainData, self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers, onsets, finOnsets,self.params)
        self.numClasses = len(set(self.labels))
        if (doBalanceLabels):
            [self.trainData, self.labels] = utilities.balance_labels(self.trainData, self.labels)
        cspModels = []
        for i in range(self.numClasses):
            for j in range(self.numClasses):
                if i<j:
                    print("Training SWCSP Model for {} vs {}".format(i,j))
                    classFts1 = self.trainData[self.labels == i, :, :]
                    classFts2 = self.trainData[self.labels == j, :, :]
                    S = []
                    S.append(classFts1)
                    S.append(classFts2)
                    cspWorker = SWCSP.SWCSP(self.params.Fs, self.numCSP)
                    cspWorker.train(S)
                    cspModels.append(cspWorker)
        fVecs = np.zeros((self.labels.shape[0],self.numCSP*2*len(cspModels)))
        for i in range(self.labels.shape[0]):
            fvec=[]
            for j in range(len(cspModels)):
                fvec = np.concatenate((fvec, cspModels[j].process(self.trainData[i,:])))
            fVecs[i,:] = fvec

        self.trainResult.cspOp = cspModels
        #Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds,:]
        labels = self.labels[inds]
        self.trainResult.mean = np.mean(fVecs,0)
        self.trainResult.std = np.std(fVecs,0)
        #Norm!

        for i in range(fVecs.shape[0]):
            fVecs[i,:] = (fVecs[i,:]-self.trainResult.mean)/self.trainResult.std
        fTransformed = fVecs
        # LDA!
        if not (self.params.finalClassifier is None):
            [Op, fTransformed] = utilities.trainClassifier(self.params.finalClassifier, fTransformed, labels)
            self.trainResult.finalOp = Op
        if not (self.params.distanceFun is None):
            self.trainResult.trainTransformedVecs = fTransformed
        self.trainResult.trainLabels = labels
Example #3
0
 def train(self, reader, doBalanceLabels):
     trainFiles = reader.traindata
     triggers = reader.classtrainTriggers
     onsets = reader.classtrainOnsets
     finOnsets = reader.classtrainFinOnsets
     [self.trainData,
      self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers,
                                               onsets, finOnsets,
                                               self.params)
     self.numClasses = len(set(self.labels))
     if (doBalanceLabels):
         [self.trainData,
          self.labels] = utilities.balance_labels(self.trainData,
                                                  self.labels)
     numSamples = self.trainData.shape[0]
     tmpVec = utilities.get2DFeatures(np.squeeze(self.trainData[0, :, :]),
                                      self.params)
     if (np.ndim(tmpVec) == 3):
         fVecs = np.zeros((numSamples, tmpVec.shape[0], tmpVec.shape[1],
                           tmpVec.shape[2]))
     if (np.ndim(tmpVec) == 2):
         fVecs = np.zeros((numSamples, tmpVec.shape[0], tmpVec.shape[1]))
     for k in range(numSamples):
         #print('Train Sample ', k, ' of ', numSamples)
         curFvec = utilities.get2DFeatures(
             np.squeeze(self.trainData[k, :, :]), self.params)
         if (np.ndim(tmpVec) == 3):
             fVecs[k, :, :, :] = curFvec
         if (np.ndim(tmpVec) == 2):
             fVecs[k, :, :, ] = curFvec
     #Shuffle!
     inds = np.random.permutation(fVecs.shape[0])
     if (np.ndim(tmpVec) == 3):
         fVecs = fVecs[inds, :, :, :]
     if (np.ndim(tmpVec) == 2):
         fVecs = fVecs[inds, :, :]
     labels = self.labels[inds]
     # ConvNet!
     model = self.neuralFun(self.numClasses)
     model.trainModel(fVecs, labels, self.batchSize, self.numEpochs)
     self.trainResult.model = model
Example #4
0
    def train(self, reader, doBalanceLabels):
        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets
        [self.trainData,
         self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers,
                                                  onsets, finOnsets,
                                                  self.params)
        if (doBalanceLabels):
            [self.trainData,
             self.labels] = utilities.balance_labels(self.trainData,
                                                     self.labels)
        csp = CSP(n_components=self.numCSP,
                  reg=None,
                  log=True,
                  norm_trace=False)
        csp.fit(self.trainData, self.labels)
        fVecs = csp.transform(self.trainData)
        self.trainResult.cspOp = csp
        #Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :]
        labels = self.labels[inds]
        self.trainResult.mean = np.mean(fVecs, 0)
        self.trainResult.std = np.std(fVecs, 0)
        #Norm!

        for i in range(fVecs.shape[0]):
            fVecs[i, :] = (fVecs[i, :] -
                           self.trainResult.mean) / self.trainResult.std
        fTransformed = fVecs
        #LDA!
        if not (self.params.finalClassifier is None):
            [Op, fTransformed
             ] = utilities.trainClassifier(self.params.finalClassifier,
                                           fTransformed, labels)
            self.trainResult.finalOp = Op
        self.trainResult.trainTransformedVecs = fTransformed
        self.trainResult.trainLabels = labels
Example #5
0
    def train(self, reader, doBalanceLabels):
        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets
        [self.trainData,
         self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers,
                                                  onsets, finOnsets,
                                                  self.params)
        if (doBalanceLabels):
            [self.trainData,
             self.labels] = utilities.balance_labels(self.trainData,
                                                     self.labels)
        numChannels = self.trainData.shape[1]
        numSamples = self.trainData.shape[0]
        sumFvecLen = 0
        for ch in range(numChannels):
            if not (self.params.fDiaps is None):
                self.params.lowFreq = self.params.fDiaps[ch][0]
                self.params.highFreq = self.params.fDiaps[ch][1]
            tmpVec = utilities.get1DFeatures(
                np.squeeze(self.trainData[0, ch, :]), self.params)
            sumFvecLen = sumFvecLen + len(tmpVec)
        fVecs = np.zeros((numSamples, sumFvecLen))
        for k in range(numSamples):
            #print('Train Sample ', k, ' of ', numSamples)
            curFvec = np.zeros((0))
            for i in range(numChannels):
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                chVec = utilities.get1DFeatures(
                    np.squeeze(self.trainData[k, i, :]), self.params)
                curFvec = np.concatenate((curFvec, chVec), axis=0)
            fVecs[k, :] = curFvec
        #Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :]
        labels = self.labels[inds]
        self.trainResult.mean = np.mean(fVecs, 0)
        self.trainResult.std = np.std(fVecs, 0)
        #Norm!

        for i in range(fVecs.shape[0]):
            fVecs[i, :] = (fVecs[i, :] -
                           self.trainResult.mean) / self.trainResult.std
        # PCA!
        fTransformed = fVecs
        if self.params.usePCA:
            pcaTransform = PCA(self.params.numPC)
            pcaTransform.fit(fVecs)
            self.trainResult.pcaOp = pcaTransform
            fTransformed = pcaTransform.transform(fVecs)
        #LDA!
        if not (self.params.finalClassifier is None):
            [Op, fTransformed
             ] = utilities.trainClassifier(self.params.finalClassifier,
                                           fTransformed, labels)
            self.trainResult.finalOp = Op
        self.trainResult.trainLabels = labels
        if not (self.params.distanceFun is None):
            self.trainResult.trainTransformedVecs = fTransformed
Example #6
0
    def train(self, reader, doBalanceLabels):
        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets
        [self.trainData,
         self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers,
                                                  onsets, finOnsets,
                                                  self.params)
        if (doBalanceLabels):
            [self.trainData,
             self.labels] = utilities.balance_labels(self.trainData,
                                                     self.labels)
        numChannels = self.trainData.shape[1]
        numSamples = self.trainData.shape[0]
        tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[0, 0, :]),
                                         self.params)
        fvecLen = len(tmpVec)
        fVecs = np.zeros((numSamples, numChannels, fvecLen))
        for k in range(numSamples):
            #print("Fvec: " + str(k) + " of " + str(numSamples))
            for i in range(numChannels):
                fVecs[k, i, :] = utilities.get1DFeatures(
                    np.squeeze(self.trainData[k, i, :]), self.params)
        #Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :, :]
        labels = self.labels[inds]

        #Norm!
        for i in range(fVecs.shape[1]):
            chanVecs = np.squeeze(fVecs[:, i, :])
            self.trainResult.mean.append(np.mean(chanVecs, 0))
            self.trainResult.std.append(np.std(chanVecs, 0))
            for k in range(chanVecs.shape[0]):
                chanVecs[k, :] = (chanVecs[k, :] - self.trainResult.mean[i]
                                  ) / self.trainResult.std[i]
            fVecs[:, i, :] = chanVecs
        fTransformed = np.zeros(
            (fVecs.shape[0], fVecs.shape[1] * fVecs.shape[2]))
        if (self.params.usePCA):
            fTransformed = np.zeros(
                (fVecs.shape[0], fVecs.shape[1] * self.params.numPC))
        # PCA or reshaping:
        for i in range(numChannels):
            chanVecs = np.squeeze(fVecs[:, i, :])
            if (self.params.usePCA):
                curPcaTransform = PCA(self.params.numPC)
                curPcaTransform.fit(chanVecs)
                self.trainResult.pcaOp.append(curPcaTransform)
                fTransformed[:, i * self.params.numPC:(i + 1) *
                             self.params.numPC] = curPcaTransform.transform(
                                 chanVecs)
            else:
                fTransformed[:, i * fVecs.shape[2]:(i + 1) *
                             fVecs.shape[2]] = chanVecs
        #LDA!
        if not (self.params.finalClassifier is None):
            [Op, fTransformed
             ] = utilities.trainClassifier(self.params.finalClassifier,
                                           fTransformed, labels)
            self.trainResult.finalOp = Op
        if not (self.params.distanceFun is None):
            self.trainResult.trainTransformedVecs = fTransformed
        self.trainResult.trainLabels = labels
Example #7
0
    def train(self, reader, doBalanceLabels):

        trainFiles = reader.traindata
        triggers = reader.classtrainTriggers
        onsets = reader.classtrainOnsets
        finOnsets = reader.classtrainFinOnsets
        [self.trainData, self.labels] = utilities.dataLoadFromEDF(self, trainFiles, triggers, onsets, finOnsets,
                                                                  self.params)
        if (doBalanceLabels):
            [self.trainData, self.labels] = utilities.balance_labels(self.trainData, self.labels)

        numChannels = self.trainData.shape[1]
        numSamples = self.trainData.shape[0]

        if self.mode == 'IndepChan':
            tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[0, 0, :]), self.params)
            sumFvecLen = len(tmpVec)
            print(sumFvecLen, self.trainData.shape)
            print(self.trainData[0, 0, :])
        if self.mode == 'CustomFreqs':
            sumFvecLen = len(self.params.channelSelect)
            print(sumFvecLen, '\n', self.params.channelSelect)
        if self.mode == 'Classic':
            sumFvecLen = 0
            for i in range(numChannels):
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[0, i, :]), self.params)
                sumFvecLen = sumFvecLen + len(tmpVec)
                #print(sumFvecLen, '\n', self.trainData[0, i, :], '\n', tmpVec)

        fVecs = np.zeros((numSamples, numChannels, sumFvecLen))


        #Fastovets
        #indepchan     [nchan = 75 x nvecs = 335 x vecLen = 49] 139
        #classic        [nchan = 75 x nvecs = 335 x vecLen = 49] 2293
        #custom         [nchan = 75 x nvecs = 335 x vecLen = 29]
        #tmpVec.shape = 16


        for k in range(numSamples):  #cust classic = 1
            curFvec = np.zeros((0))
                # print("Fvec: " + str(k) + " of " + str(numSamples))
            for i in range(numChannels):
                if not (self.params.fDiaps is None):
                    self.params.lowFreq = self.params.fDiaps[i][0]
                    self.params.highFreq = self.params.fDiaps[i][1]
                tmpVec = utilities.get1DFeatures(np.squeeze(self.trainData[k, i, :]), self.params)
                if self.mode == 'IndepChan':
                    fVecs[k, i, :] = tmpVec  #"""КАК НАСЧЕТ ТОГО, ЧТОБЫ СОБЛЮДАТЬ РАЗМЕРНОСТЬ FVECS?""" [k, i, :]
                if self.mode == 'CustomFreqs':
                    specVal = np.mean(tmpVec)  # !!!!!!! was not meaned while sumfveclen was counted!
                    fVecs[k, i, 0] = specVal #[k, i]
                if self.mode == 'Classic':
                    curFvec = np.concatenate((curFvec, tmpVec), axis=0)
            if self.mode == 'Classic':
                fVecs[k, i, :] = curFvec #[k, :]

        # Shuffle!
        inds = np.random.permutation(fVecs.shape[0])
        fVecs = fVecs[inds, :, :]
        labels = self.labels[inds]

        #print(self.trainResult.mean, self.trainResult.std)

        # Norm!
        if self.mode == 'Classic' or self.mode == 'CustomFreqs':
            self.trainResult.mean = np.mean(fVecs, 0)
            self.trainResult.std = np.std(fVecs, 0)
            for i in range(fVecs.shape[0]):
                fVecs[i, :, :] = (fVecs[i, :, :] - self.trainResult.mean) / self.trainResult.std
            fTransformed = fVecs
            #PCA
            if self.params.usePCA: #cycle! as in INDEPCHAN
                for i in range(fVecs.shape[1]):
                    tmp = np.zeros((fVecs.shape[0], fVecs.shape(2)))
                    tmp = fVecs(:, i, :)
                    pcaTransform = PCA(self.params.numPC)
                    pcaTransform.fit(tmp)
                    self.trainResult.pcaOp = pcaTransform
                fTransformed = pcaTransform.transform(tmp)