def main():
    model, class_to_idx = utilities.load_checkpoint(file_path)
    map_location = 'cpu'
    strict = False
    img_datasets, data_loaders = utilities.transform_load_data(data_directory)
    with open(category_names, 'r') as f:
        cat_to_name = json.load(f)
    probs, classes = utilities.predict(path_image, model, number_of_outputs,
                                       device)
    print("THERE ARE THE PROBABILITIES: ", probs)
    print("THESE ARE THE CLASSES: ", classes)
    class_names = img_datasets['train'].classes
    flower_names = [cat_to_name[class_names[e]] for e in classes]
    print("THESE ARE THE TOP 5 CATEGORY FLOWER NAMES: ", flower_names)
Example #2
0
def main():

    parser.add_argument(
        'image_dir',
        action="store",
        default=
        "/home/workspace/ImageClassifier/flowers/test/10/image_07090.jpg")
    parser.add_argument(
        'checkpoint',
        action="store",
        default="/home/workspace/ImageClassifier/checkpoint.pth")
    parser.add_argument('--top_k',
                        action="store",
                        dest="top_k",
                        type=int,
                        default=5)
    parser.add_argument(
        '--category_names',
        action="store",
        dest="classes_names",
        default="/home/workspace/ImageClassifier/cat_to_name.json")
    parser.add_argument('--gpu', action="store", dest="device", default="gpu")

    p_args = parser.parse_args()

    #gpu or cpu
    device = torch.device("cpu")
    if torch.cuda.is_available() and p_args.device == 'gpu':
        device = torch.device("cuda:0")
    #load the categories names
    cat_names = ut.load_categories(p_args.classes_names)
    #load the checkpoint
    chkpoint = ut.load_checkpoint(p_args.checkpoint)
    #configure the model
    model = chkpoint['model']
    model.load_state_dict(chkpoint['model_state'])
    #process the image
    image = ut.process_image(p_args.image_dir)
    #predict
    probs, classes = brain.predict(image, model, p_args.top_k, device)

    #configure the probabilities and class names
    probs = probs.cpu().numpy().flatten().tolist()
    classes = classes.cpu().numpy().flatten().tolist()
    index_to_class = {value: key for key, value in model.class_to_idx.items()}
    print("\n\n\n\n{:30s}{:20s}".format("Class Name", " Probability"))
    for i in range(len(classes)):
        name = [cat_names[index_to_class[classes[i]]]][0]
        probability = probs[i] * 100
        print("{:30s}{:0.3f}".format(name, probability))
Example #3
0
def main():
    #Load checkpoint from saved path if available
    model=utilities.load_checkpoint(path)
    #get categories from json file
    with open('cat_to_name.json', 'r') as json_file:
        cat_to_name = json.load(json_file)
    #Predict picture category using trained model
    probabilities = utilities.predict(path_image, model, number_of_outputs)
    #Get labels and probabilities of prediciton for printing
    labels = [cat_to_name[str(index + 1)] for index in np.array(probabilities[1][0])]
    probability = np.array(probabilities[0][0])
    i=0
    while i < number_of_outputs:
        print("{} with a probability of {}".format(labels[i], probability[i]))
        i += 1
def main(): 
    args = parse_args()
    gpu = args.gpu
    model = load_checkpoint(args.checkpoint)
    cat_to_name = load_cat_names(args.category_names)
    if args.filepath == None:
        img_num = random.randint(1, 102)
        image = random.choice(os.listdir('./flowers/test/' + str(img_num) + '/'))
        img_path = './flowers/test/' + str(img_num) + '/' + image
        prob, classes = predict(img_path, model, int(args.top_k), gpu)
        print('Image selected: ' + str(cat_to_name[str(img_num)]))
    else:
        img_path = args.filepath
        prob, classes = predict(img_path, model, int(args.top_k), gpu)
        print('File selected: ' + img_path)
    print(prob)
    print(classes)
    print([cat_to_name[x] for x in classes])
def main():
    in_args = get_input_args()
    model = load_checkpoint(in_args)

    gpu = in_args.gpu
    image_path = in_args.image
    topk = in_args.top_k
    labels_path = in_args.labels

    cat_to_name = category_names(labels_path)
    probs, classes = predict(image_path, model, gpu, topk)
    labels = [cat_to_name[str(index)] for index in classes]

    output = []
    for i in range(0, len(labels)):
        output.append([labels[i], classes[i], probs[i]])

    l1, l2 = len(output), len(output[0])
    print(pd.DataFrame(output, index=[''] * l1, columns=[''] * l2).T)
Example #6
0
def main():

    # Get the arguments passed to the python script
    in_arg = get_input_args_predict()

    # Load check point from pass
    model = load_checkpoint(in_arg.checkpoint)

    # Send model to gpu
    model_gpu, device = hw_control(model, in_arg.gpu)

    # Perform the prediction
    probs, classes = predict(in_arg.path, model, in_arg.top_k, in_arg.gpu)

    with open('cat_to_name.json', 'r') as f:
        cat_to_name = json.load(f)

    Class_names = [cat_to_name[str(class_name)] for class_name in classes]

    print("Most probable cat.:\t", Class_names)
    print("Probalbilities \t", probs)

    return probs, classes
Example #7
0
print('Calculations are done on: ', device)

# read in the dictionary enoding the real labels relating to the directories
if FLAGS.category_names != None:
    # Check whether the category names file really exists otherwise raise an error
    if os.path.isfile(FLAGS.category_names):
        category_names_file = os.path.normpath(FLAGS.category_names)
        with open(category_names_file, 'r') as f:
            cat_to_name = json.load(f)
    else:
        raise ValueError("Couldn't not identify the category names file.")

# load the CNN from the checkpoint file
if os.path.isfile(FLAGS.checkpoint_file):
    checkpoint_file = os.path.normpath(FLAGS.checkpoint_file)
    dnn_model, _ = utilities.load_checkpoint(checkpoint_file, device)
else:
    raise ValueError("Couldn't not identify the checkpoint file.")

# load image and do the inference
if os.path.isfile(FLAGS.image_file):
    image_file = os.path.normpath(FLAGS.image_file)
    inference = utilities.predict(image_file,
                                  dnn_model,
                                  device,
                                  topk=FLAGS.top_k)
else:
    raise ValueError("Couldn't not identify the image file.")

# get real names of the infered classes
if FLAGS.category_names != None:
Example #8
0
ap.add_argument('base_input', nargs='*', action="store")
ap.add_argument('--top_k', dest="top_k", action="store", default=1, type=int)
ap.add_argument('--category_names',
                dest="category_names",
                action="store",
                default='./cat_to_name.json')
ap.add_argument('--gpu', dest="gpu", action="store_true")

arguments = ap.parse_args()
input_image = arguments.base_input[0]
checkpoint = arguments.base_input[1]
top_k = arguments.top_k
category_names = arguments.category_names
use_gpu = arguments.gpu and torch.cuda.is_available()

model, optimizer, criterion = utilities.load_checkpoint(checkpoint)
results = utilities.predict(input_image, model, use_gpu=use_gpu, top_k=top_k)

if use_gpu:
    probabilities = results[0].cpu().numpy()[0]
else:
    probabilities = results[0].numpy()[0]

if use_gpu:
    names = results[1].cpu().numpy()[0]
else:
    names = results[1].numpy()[0]

print("----- Results: -------")
for i in range(top_k):
    print("{} with a probability of {:.2%}".format(
Example #9
0
parser = argparse.ArgumentParser()

parser.add_argument('--image_path', action="store", dest="image_path")
parser.add_argument('--checkpoint', action="store", dest="checkpoint")
parser.add_argument('--top_k',
                    action="store",
                    default=5,
                    type=int,
                    dest="topk")
parser.add_argument('--category_name',
                    action="store",
                    default=None,
                    dest="cat")
parser.add_argument('--gpu', action="store_true", default=False, dest="gpu")

results = parser.parse_args()

model, classes = utilities.load_checkpoint(results.checkpoint, results.gpu)
if results.cat:
    classes_index = utilities.load_classes(results.cat)
labels, probs, label_index = utilities.predict(results.image_path, model,
                                               classes, results.topk,
                                               classes_index, results.gpu)
print('the label index of the image-the file name-', label_index)
print('the name of the flower :', labels)
print('the probabilities of each name: ', probs)
'''
 python predict.py --image_path 'flowers/test/79/image_06708.jpg' --checkpoint checkpointvgg.pth --category_name cat_to_name.json --top_k 5 --gpu
'''
Example #10
0
from network import Network

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

parser_sec = argparse.ArgumentParser()
parser_sec.add_argument('b_img_path', action='store')  # image path
parser_sec.add_argument('checkpoint', action='store')  # checkpoint file
parser_sec.add_argument('--top_k', nargs='?', type=int)
parser_sec.add_argument('--category_names', nargs='?')
parser_sec.add_argument('--gpu', action='store_true')

args = parser_sec.parse_args()
args = vars(args)

arg_sec_inputs = []
for key, value in args.items():
    arg_sec_inputs.append(value)

if arg_sec_inputs[3] is None:
    arg_sec_inputs[3] = 'cat_to_name.json'

with open(arg_sec_inputs[3], 'r') as f:
    cat_to_name = json.load(f)

Network.model = utilities.load_checkpoint('saves/mycheckpoint.pth')

image = utilities.process_image(arg_sec_inputs[0])

utilities.predict_image(image, Network.model, True, cat_to_name,
                        arg_sec_inputs[2])
Example #11
0
                    help="use a mapping of categories to real names")
parser.add_argument('--gpu',
                    action='store_true',
                    default=False,
                    dest="gpu",
                    help="use gpu")

# Capture command line arguments
results = parser.parse_args()
image_path = results.image
checkpoint = results.checkpoint
top_k = results.top_k
category_names = results.category_names
gpu = results.gpu

# Load the provided checkpoint
model = utilities.load_checkpoint(checkpoint)

# Get the inverse of class_to_idx
idx_to_class = {v: k for k, v in model.class_to_idx.items()}

# Calculate top k probabilities and classes, using gpu if requested
probs, classes = utilities.predict(image_path, checkpoint, idx_to_class, top_k,
                                   gpu)

# Get label map if provided
cat_to_name = utilities.label_mapping(category_names)

# Print image class and top k class probabilities
utilities.print_image_prob(image_path, cat_to_name, top_k, probs, classes)
                type=str)
ap.add_argument('--top_k', default=5, dest="top_k", action="store", type=int)
ap.add_argument('--category_names',
                dest="category_names",
                action="store",
                default='cat_to_name.json')
ap.add_argument('--gpu', default="gpu", action="store", dest="gpu")

pa = ap.parse_args()
path_image = pa.input_img
number_of_outputs = pa.top_k
device = pa.gpu
input_img = pa.input_img
path = pa.checkpoint

utilities.load_checkpoint(path)

with open('cat_to_name.json', 'r') as json_file:
    cat_to_name = json.load(json_file)

probabilities = utilities.predict(path_image, model, number_of_outputs, device)

labels = [
    cat_to_name[str(index + 1)] for index in np.array(probabilities[1][0])
]
probability = np.array(probabilities[0][0])

i = 0
while i < number_of_outputs:
    print("{} with a probability of {}".format(labels[i], probability[i]))
    i += 1
Example #13
0
    args = get_args_pred()

    # Build dictionary of the mapping from class indices to class names
    if args.category_names != None:
        cat_to_name = build_cat_to_name(args.category_names)
    else:
        cat_to_name = build_cat_to_name()

    # Set the number of most likely classes to return
    if args.top_k != None:
        top_k = args.top_k
    else:
        top_k = 5

    # Load model
    model = load_checkpoint(args.checkpoint)

    # Predict using the model
    probs, classes = predict(args.path_to_image,
                             model,
                             use_gpu=args.gpu,
                             topk=top_k)

    # Format the predictions
    objects = []
    for class_idx in np.array(classes).flatten():
        for key, value in model.class_to_idx.items():
            if class_idx == value:
                objects.append(cat_to_name[key])

    y_pos = np.arange(len(objects))
Example #14
0
    if category_names_path:
        idx_to_class = load_class_mapping(category_names_path)
        print(
            f'category name: {str([idx_to_class[idx] for idx in class_idx]).strip("[]")}\n'
            f'class probability: {str(class_probs).strip("[]")}')

    else:
        print(f'class index: {str(class_idx).strip("[]")}\n'
              f'class probability: {str(class_probs).strip("[]")}')


if __name__ == "__main__":
    parser = ArgumentParser(
        __file__, description='make prediction using a trained network')
    parser.add_argument("image_path",
                        type=str,
                        help="path specifying location of input image")
    parser.add_argument("checkpoint",
                        type=str,
                        help="path specifying location of model checkpoint")
    parser.add_argument("--gpu", "-g", action="store_true", default=False)
    parser.add_argument("--arch", "-a", type=str, default=None)
    parser.add_argument("--top_k", "-c", type=int, default=1)
    parser.add_argument("--category_names", "-m", type=str, default=None)
    args = parser.parse_args()

    model, model_checkpoint = load_checkpoint(args.checkpoint, args.gpu,
                                              args.arch)
    class_probs, class_idx = predict(args.image_path, model, args.top_k)
    show_class_name(class_idx, class_probs, args.category_names)