iris = load_iris() X = iris.data[:, [2, 3]] y = iris.target test_portion = 0.3 seed = 1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_portion, random_state=seed, stratify=y) sc = StandardScaler() sc.fit(X_train) X_train_std = sc.transform(X_train) X_test_std = sc.transform(X_test) c = 100 seed = 1 lr = LogisticRegression(C=c, random_state=seed) lr.fit(X_train_std, y_train) X_combined_std = np.vstack((X_train_std, X_test_std)) y_combined = np.hstack((y_train, y_test)) plot_decision_regions(X_combined_std, y_combined, classifier=lr, test_idx=range(105, 150)) plt.legend(loc='upper left') plt.show()
if h > m + s: y.append(1.) X.append(temp[i, :]) elif h < m - s: y.append(-1.) X.append(temp[i, :]) else: for i, h in enumerate(humidity): if h > m: y.append(1.) X.append(temp[i, :]) elif h <= m: y.append(-1.) X.append(temp[i, :]) y = np.array(y) X = np.array(X) # Fit perceptron p = Perceptron() p.fit(X, y) # Display results f4 = plt.figure(5) utilities.plot_decision_regions(X, y, p, title='Humid or Dry', xlabel='normalized temperature', ylabel='normalized light intensity')
if h > m + s: y.append(1.) X.append(temp[i, :]) elif h < m - s: y.append(-1.) X.append(temp[i, :]) else: for i, h in enumerate(humidity): if h > m: y.append(1.) X.append(temp[i, :]) elif h <= m: y.append(-1.) X.append(temp[i, :]) y = np.array(y) X = np.array(X) # Fit perceptron p = Perceptron() p.fit(X, y) # Display results f4 = plt.figure(5) utilities.plot_decision_regions(X, y, p, title='Humid or Dry', xlabel='normalized temperature', ylabel='normalized pressure')
file.write('Test Set Accuracy : {} \n'.format(ACCURACY_SCORE_TEST)) file.write( 'Training Set Normalized Mutual Information : {} \n'.format(NMI_TRAIN)) file.write('Test Set Normalized Mutual Information : {} \n'.format(NMI_TEST)) file.write('Jaccard Similarity Score for train set : {} \n'.format( jaccard_score(y_train, y_train_pred))) file.write('Jaccard Similarity Score for test set : {} \n'.format( jaccard_score(y_test, y_test_pred))) file.close() # plot the lower dimensional embedding #multi_timepoints_plot(X_train_tsne, y_train, time_points) # for the full dataset # single_timepoint_plot(X_train, y_train, [7, 8]) # plot the redcued dimensional embedding # plot the svm decision boundaries for train set plot_decision_regions(X_train, y_train, classifier=svm) # plot the regional boundaries plt.savefig(SAVE_PATH + '/svm_model_viz.jpg') # plot the svm decision boundaries for test set plot_decision_regions(X_test, y_test, classifier=svm) # plot the regional boundaries plt.savefig(SAVE_PATH + '/svm_model_viz_test.jpg') # plot the precision recall call for different threshold probabilities for train set plot_precision_recall_curve(y_train, scores_train) plt.savefig(SAVE_PATH + '/PR_train.jpg') # plot the precision recall call for different threshold probabilities for test set plot_precision_recall_curve(y_test, scores_test) plt.savefig(SAVE_PATH + '/PR_test.jpg')
for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_isomap[y_train == l, 0], X_train_isomap[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') plt.show() lr = LogisticRegression() lr.fit(X_train_isomap, y_train) plot_decision_regions(X_train_isomap, y_train, classifier=lr) plt.xlabel('PC1') plt.ylabel('PC2') plt.legend(loc='lower left') plt.show() # test data visualization X_test_isomap = isomap.transform(X_test_std) plot_decision_regions(X_test_isomap, y_test, classifier=lr) plt.xlabel('PC1') plt.ylabel('PC2') plt.legend(loc='lower left') plt.show() # reducing in to 3 dimensions