print("Reading Training Data (Cancer Problem)") # Reading Training data trainData = utl.readDataSetAsMatrix(utl.BREAST_CANCER_TRAINING_FILE, 1, ',') # Separating outputs from inputs inputs = trainData[:, :9] outputs = trainData[:, 9:] if debug: print("Training RBF Model (Cancer problem)") configuration = utl.RBFTrainProcessConfiguration() configuration.unitsInHiddenLayer = unitsInHiddenLayer return utl.trainRBFNetwork(\ inputs, outputs, configuration ) if __name__ == "__main__": model, errorsByEpoch = trainModel(8) print("Saving RBF Trained Model (Cancer Problem)") utl.saveModelAtLocation(\ model, utl.BREAST_CANCER_RBF_MODEL_FILE )
) inputs = trainData[:, 2:] if debug: print("Training Model RNN hourly Model (Currency Exchange problem)") configuration = utl.RecurrentTrainProcessConfiguration() configuration.unitsInHiddenLayer = unitsInHiddenLayer configuration.maxEpochs = 100 configuration.learningrate = 0.001 configuration.momentum = 0.95 return utl.trainJordanRecurrentNetwork(\ inputs, 1, configuration ) if __name__ == "__main__": model, errorsByEpoch = trainModel(8) print("Saving RNN Jordan Trained Model (Currency Exchange problem)") utl.saveModelAtLocation( model, utl.CURRENCY_EXCHANGE_RNN_JORDAN_MODEL_FILE(\ utl.SAMPLING_TYPE.HOURLY ) )
) inputs = trainData[:, 2:] if debug: print("Training Model RNN Elman Model (Currency Exchange problem)") configuration = utl.RecurrentTrainProcessConfiguration() configuration.unitsInHiddenLayer = unitsInHiddenLayer configuration.maxEpochs = 100 configuration.learningrate = 0.001 configuration.momentum = 0.95 return utl.trainELmanRecurrentNetwork(\ inputs, 1, configuration ) if __name__ == "__main__": model, errorsByEpoch = trainModel(4) print("Saving RNN Elman Trained Model (Currency Exchange problem)") utl.saveModelAtLocation( model, utl.CURRENCY_EXCHANGE_RNN_ELMAN_MODEL_FILE(\ utl.SAMPLING_TYPE.AT_CLOSING_DAY ) )