Example #1
0
def save_datas(energies_file_pegas, energies_file_dwave, test_set_file, n):
    with open(energies_file_pegas, "r") as intput:
        energies_pegas = eval(intput.read())
    with open(energies_file_dwave, "r") as intput:
        energies_dwave = eval(intput.read())

    with open(test_set_file, "r") as inf:
        dict_from_file = eval(inf.read())

    for energy_pegas, energy_dwave, cnf, sat in zip(energies_pegas,
                                                    energies_dwave,
                                                    dict_from_file['cnf'],
                                                    dict_from_file['sat']):
        m = len(cnf)

        if m + energy_pegas == 0:
            en_p = 1
        else:
            en_p = 0

        if m + energy_dwave == 0:
            en_dw = 1
        else:
            en_dw = 0

        save_to_csv('max_sat_pegas_vs_2000', [[m, m / n, en_p, en_dw, sat]], n)
    def report_random_forest():

        size_k = len(list_k)
        size_min_samp = len(min_samp_list)

        print "k=", size_k, "min_samples=", size_min_samp

        matrix = [[0 for x in range(size_min_samp)] for y in range(size_k)]
        i = 0
        j = 0

        last_value_min_samples = list_k[0]

        for param, mean_score, cv_scores in clf.grid_scores_:

            if param["feature_selection__k"] != last_value_min_samples:
                i += 1
                j = 0
                last_value_min_samples = param["feature_selection__k"]

            #print param, "mean=", mean_score, "i=", i, "j=", j

            matrix[i][j] = mean_score

            j += 1

        import numpy as np

        header = [""] + min_samp_list
        matrix = np.c_[list_k, matrix]

        u.save_to_csv("RandomForest.csv", Algorithms_path, matrix, header)
        u.change_decimal_separator("RandomForest.csv", Algorithms_path)
    def report_decision_tree():

        size_k = len(list_k)
        size_min_samp = len(min_samp_list)

        print "k=", size_k, "min_samples=", size_min_samp

        matrix = [[0 for x in range(size_min_samp)] for y in range(size_k)]
        i = 0
        j = 0

        last_value_min_samples = min_samp_list[0]

        for param, mean_score, cv_scores in clf.grid_scores_:

            if param[
                    "decision_tree__min_samples_split"] != last_value_min_samples:
                i += 1
                j = 0
                last_value_min_samples = param[
                    "decision_tree__min_samples_split"]

            #print param, "mean=", mean_score, "i=", i, "j=", j

            matrix[j][i] = mean_score

            j += 1

        import numpy as np

        header = [""] + min_samp_list
        matrix = np.c_[list_k, matrix]

        u.save_to_csv("DecisionTree.csv", Algorithms_path, matrix, header)
        u.change_decimal_separator("DecisionTree.csv", Algorithms_path)
    def report_SVM():

        size_k = len(list_k)
        size_c = len(list_C)

        print "k=", size_k, "c=", size_c

        matrix = [[0 for x in range(size_c)] for y in range(size_k)]
        i = 0
        j = 0

        last_value_C = list_C[0]

        for param, mean_score, cv_scores in clf.grid_scores_:

            if param["SVM__C"] != last_value_C:
                i += 1
                j = 0
                last_value_C = param["SVM__C"]

            #print param, "mean=", mean_score, "i=", i, "j=", j

            matrix[j][i] = mean_score

            j += 1

        import numpy as np

        header = [""] + list_C
        matrix = np.c_[list_k, matrix]

        u.save_to_csv("SVM.csv", Algorithms_path, matrix, header)
        u.change_decimal_separator("SVM.csv", Algorithms_path)
Example #5
0
def pegasus_phase_draw(energies_file, test_set_file, n):

    with open(energies_file, "r") as intput:
        energies = eval(intput.read())


    with open(test_set_file, "r") as inf:
        dict_from_file = eval(inf.read())


    for energy, cnf , sat in zip(energies, dict_from_file['cnf'], dict_from_file['sat']):
        m = len(cnf)
    
        if m + energy == 0:
            en = 1 
        else: 
            en = 0

        save_to_csv('max_sat_', [[m, m / n, en , sat]], n)


    import pandas as pd
    import numpy as np 
    import matplotlib.pyplot as plt


    df = pd.read_csv('logs_max_sat__{0}.csv'.format(n), names=['M','alfa','y_hat','y_acc'], sep=',').sort_values(['alfa'])[0:1000]



    bins = np.arange(0, 2.1, 0.20)

    df['bins'] = pd.cut(df.alfa, bins) 


    ss_acc = df.groupby('bins')['y_acc'].agg(['sum', 'count'])
    ss_hat = df.groupby('bins')['y_hat'].agg(['sum', 'count'])



    y = [x.mid for x in ss_acc.index.values]


    plt.title('2-SAT, each point is averaged by step: (1/20)', fontsize=14)
    plt.plot(y, ss_hat['sum']/ss_hat['count'], "-",label='Pegasus-{0}'.format(n))
    plt.plot(y, ss_acc['sum']/ss_acc['count'], "-",label='MiniSAT-{0}'.format(n))



    plt.xticks(fontsize = 15)
    plt.yticks(fontsize = 15)
    plt.grid()
    plt.legend(fontsize=12)
    plt.show()
    plt.savefig('phase{0}'.format(n))
    plt.close()

    
Example #6
0
def main():
    # for logging purposes
    start_time = time()

    # create the sitemap and convert the dictionaries to CSV
    result = create_sitemap(START_URL, EXPLORED, TO_VISIT)
    sitemap, n_pages = result[0], result[1]
    to_csv = dict_to_csv(sitemap)

    elapsed_time = time() - start_time
    stats = f"Explored { n_pages - 1 } pages in { elapsed_time } seconds"

    print(colored("=" * 50, "white"))
    print(colored(stats, "blue"))

    # write the data to a sitemap CSV file (easily exportable to Excel)
    save_to_csv(to_csv, "sitemap")

    print(colored("Successfully saved sitemap to CSV", "magenta"))