def learnUtil(self,input,target,learningRate=0.01):
        """
        This method will learn the weights for the different layers.
        """
        delta=[]
        lnCases=input.shape[0]

        # Run the newtwork
        self.run(input)

        #Calulate the error factor and update the weights
        for index in reversed(range(self.layerCount)):
            if index==self.layerCount-1:
            # The last layer just before the output
                output_delta=self._layerOutput[index]-target.T
                squareErr=output_delta**2
                error=np.sum(squareErr)
                delta.append(output_delta*utils.sigm(self._layerInput[index],True))
            else:
            # For other layers
                output_delta=self.weights[index+1].T.dot(delta[-1])
                delta.append(output_delta[:-1,:]*utils.sigm(self._layerInput[index],True))

        # Compute Weight Vector
        for index in range(self.layerCount):
            delta_index=self.layerCount-1-index
            if index==0:
                layerOutput=np.vstack([input.T,np.ones([1,lnCases])])
            else:
                layerOutput=np.vstack([self._layerOutput[index-1],np.ones([1,self._layerOutput[index-1].shape[1]])])
            weightedDelta=np.sum(layerOutput[None,:,:].transpose(2,0,1)*delta[delta_index][None,:,:].transpose(2,1,0),axis=0)
            self.weights[index]-=learningRate*weightedDelta

        return error
Example #2
0
    def run(self, input):
        """
        This method will run the network for given input and return the output.
        """
        lnCases = input.shape[0]

        #Clear out the previous run network data
        self._layerInput = []
        self._layerOutput = []

        #Run the network
        for index in range(self.layerCount):
            if index == 0:
                #Input
                layerInput = self.weights[0].dot(
                    np.vstack([input.T, np.ones([1, lnCases])]))
            else:
                #Intermediate layers
                layerInput = self.weights[index].dot(
                    np.vstack([
                        self._layerOutput[-1],
                        np.ones([1, self._layerOutput[-1].shape[1]])
                    ]))

            self._layerInput.append(layerInput)
            self._layerOutput.append(utils.sigm(layerInput))
        return self._layerOutput[-1].T
Example #3
0
    def learnUtil(self, input, target, learningRate=0.01):
        """
        This method will learn the weights for the different layers.
        """
        delta = []
        lnCases = input.shape[0]

        # Run the newtwork
        self.run(input)

        #Calulate the error factor and update the weights
        for index in reversed(range(self.layerCount)):
            if index == self.layerCount - 1:
                # The last layer just before the output
                output_delta = self._layerOutput[index] - target.T
                squareErr = output_delta**2
                error = np.sum(squareErr)
                delta.append(output_delta *
                             utils.sigm(self._layerInput[index], True))
            else:
                # For other layers
                output_delta = self.weights[index + 1].T.dot(delta[-1])
                delta.append(output_delta[:-1, :] *
                             utils.sigm(self._layerInput[index], True))

        # Compute Weight Vector
        for index in range(self.layerCount):
            delta_index = self.layerCount - 1 - index
            if index == 0:
                layerOutput = np.vstack([input.T, np.ones([1, lnCases])])
            else:
                layerOutput = np.vstack([
                    self._layerOutput[index - 1],
                    np.ones([1, self._layerOutput[index - 1].shape[1]])
                ])
            weightedDelta = np.sum(
                layerOutput[None, :, :].transpose(2, 0, 1) *
                delta[delta_index][None, :, :].transpose(2, 1, 0),
                axis=0)
            self.weights[index] -= learningRate * weightedDelta

        return error
    def run(self,input):
        """
        This method will run the network for given input and return the output.
        """
        lnCases=input.shape[0]

        #Clear out the previous run network data
        self._layerInput=[]
        self._layerOutput=[]

        #Run the network
        for index in range(self.layerCount):
            if index==0:
                #Input
                layerInput=self.weights[0].dot(np.vstack([input.T,np.ones([1,lnCases])]))
            else:
                #Intermediate layers
                layerInput=self.weights[index].dot(np.vstack([self._layerOutput[-1],np.ones([1,self._layerOutput[-1].shape[1]])]))

            self._layerInput.append(layerInput)
            self._layerOutput.append(utils.sigm(layerInput))
        return self._layerOutput[-1].T