print(out_string.format("STD", passed.std, distinctive.std, non_passed.std, passing.std)) print(out_string.format('Min', passed.min, distinctive.min, non_passed.min, passing.min)) print(out_string.format('QI\t', passed.q1, distinctive.q1, non_passed.q1, passing.q1)) print(out_string.format('Median', passed.median, distinctive.median, non_passed.median, passing.median)) print(out_string.format('QIII', passed.q3, distinctive.q3, non_passed.q3, passing.q3)) print(out_string.format("Max", passed.max, distinctive.max, non_passed.max, passing.max)) print(out_string.format('IQR', passed.iqr, distinctive.iqr, non_passed.iqr, passing.iqr)) print(out_string.format("Count", passed.count, distinctive.count, non_passed.count, passing.count)) key = b'account_key' passing = list_to_account_dict(passing_engagement, key) passed = list_to_account_dict(passed_engagement, key) distinctive = list_to_account_dict(distinctive_engagement, key) non_passing = list_to_account_dict(non_passing_engagement, key) passed_total = total_engagement_attribute(b'total_minutes_visited', sum, passed) passing_total = total_engagement_attribute(b'total_minutes_visited', sum, passing) distinctive_total = total_engagement_attribute(b'total_minutes_visited', sum, distinctive) non_passing_total = total_engagement_attribute(b'total_minutes_visited', sum, non_passing) p = to_array(passed_total) print_columns_redone(passed_total, distinctive_total, non_passing_total, passing_total, 'total_minutes_visited') passed = pandas.DataFrame({'passed':to_array(passed_total)}) distinctive = pandas.DataFrame({'distinctive':to_array(distinctive_total)}) non_passing = pandas.DataFrame({'non-passing':to_array(non_passing_total)}) figure = plt.figure() axe = figure.gca() axe = passed.plot(kind='kde', ax=axe) axe = distinctive.plot(kind='kde', ax=axe) axe = non_passing.plot(kind='kde', ax=axe)
@property def summary(self): if self._summary is None: self._summary = SummaryStatistics(mean=self.data.mean(), std=self.data.std(), minimum=self.data.min(), maximum=self.data.max()) return self._summary def print_summary_statistics(self): print( 'Mean:', self.summary.mean) print( 'Standard deviation:', self.summary.std) print( 'Minimum:', self.summary.minimum) print( 'Maximum:', self.summary.maximum) total_minutes_by_account = total_engagement_attribute('total_minutes_visited', sum, engagement_by_account) statistics = Summary(total_minutes_by_account) if PWEAVE: statistics.print_summary_statistics() count = 0 if PWEAVE: for account, value in total_minutes_by_account.items(): if value < 1: print(account,value) if count > 5: break count += 1 if PWEAVE: for enrollment in paid_enrollments: