def main(): # Check input if len(sys.argv) != 5: print"usage: python run_ML_FW.py [train file] [setting file] [model folder] [test data folder]" exit() # Get environment variables train_file = sys.argv[1] setting_file = sys.argv[2] model_folder = sys.argv[3] test_data_folder = sys.argv[4] tops = 10#int(sys.argv[5]) # Create model folder if it doesn't exist if os.path.exists(model_folder): shutil.rmtree(model_folder) os.makedirs(model_folder) # Read settings print'reading setting ...' ddict = utilities.read_setting(setting_file) print'write setting ...' file_name = '%s/setting.txt'%(model_folder) utilities.write_setting(ddict, file_name) # Read data for computing perplexities print'read data for computing perplexities ...' (wordids_1, wordcts_1, wordids_2, wordcts_2) = \ utilities.read_data_for_perpl(test_data_folder) # Initialize the algorithm print'initialize the algorithm ...' ml_fw = ML_FW.MLFW(ddict['num_terms'], ddict['num_topics'], ddict['tau0'], ddict['kappa'], ddict['iter_infer']) # Start print'start!!!' i = 0 while i < ddict['iter_train']: i += 1 print'\n***iter_train:%d***\n'%(i) datafp = open(train_file, 'r') j = 0 while True: j += 1 (wordids, wordcts) = utilities.read_minibatch_list_frequencies(datafp, ddict['batch_size']) # Stop condition if len(wordids) == 0: break # print'---num_minibatch:%d---'%(j) (time_e, time_m, theta) = ml_fw.static_online(ddict['batch_size'], wordids, wordcts) # Compute sparsity sparsity = utilities.compute_sparsity(theta, theta.shape[0], theta.shape[1], 't') # Compute perplexities LD2 = utilities.compute_perplexities_fw(ml_fw.beta, ddict['iter_infer'], \ wordids_1, wordcts_1, wordids_2, wordcts_2) # Search top words of each topics list_tops = utilities.list_top(ml_fw.beta, tops) # Write files utilities.write_file(i, j, ml_fw.beta, time_e, time_m, theta, sparsity, LD2, list_tops, tops, model_folder) datafp.close() # Write final model to file file_name = '%s/beta_final.dat'%(model_folder) utilities.write_topics(ml_fw.beta, file_name) # Finish print'done!!!'
def run(self): # Initialize the algorithm print 'initialize the algorithm ...' online_vb = Online_VB.OnlineVB( self.settings['num_docs'], self.settings['num_terms'], self.settings['num_topics'], self.settings['alpha'], self.settings['eta'], self.settings['tau0'], self.settings['kappa'], self.settings['conv_infer'], self.settings['iter_infer']) # Start print 'start!!!' i = 0 while i < self.settings['iter_train']: i += 1 print '\n***iter_train:%d***\n' % (i) datafp = open(self.train_file, 'r') j = 0 while True: j += 1 (wordids, wordcts) = utilities.read_minibatch_list_frequencies( datafp, self.settings['batch_size']) # Stop condition if len(wordids) == 0: break # print '---num_minibatch:%d---' % (j) (time_e, time_m, theta) = online_vb.static_online(self.settings['batch_size'], wordids, wordcts) # Compute sparsity sparsity = utilities.compute_sparsity(theta, theta.shape[0], theta.shape[1], 't') # Compute perplexities LD2 = utilities.compute_perplexities_vb( online_vb._lambda, self.settings['alpha'], self.settings['eta'], self.settings['iter_infer'], self.test_data) # Search top words of each topics list_tops = utilities.list_top(online_vb._lambda, self.tops) # Write files utilities.write_file(i, j, online_vb._lambda, time_e, time_m, theta, sparsity, LD2, list_tops, self.tops, self.model_folder) datafp.close() # Write settings print 'write setting ...' file_name = '%s/setting.txt' % (self.model_folder) utilities.write_setting(self.settings, file_name) # Write final model to file print 'write final model ...' file_name = '%s/beta_final.dat' % (self.model_folder) utilities.write_topics(online_vb._lambda, file_name) # Finish print 'done!!!'
def run(self): # Initialize the algorithm print'initialize the algorithm ...' new2_online_ope = New2Online_OPE.New2OnlineOPE(self.settings['num_docs'], self.settings['num_terms'], self.settings['num_topics'], self.settings['alpha'], self.settings['eta'], self.settings['tau0'], self.settings['kappa'], self.settings['iter_infer']) # Start print'start!!!' i = 0 while i < self.settings['iter_train']: i += 1 print'\n***iter_train:%d***\n'%(i) datafp = open(self.train_file, 'r') j = 0 while True: j += 1 (wordids, wordcts) = utilities.read_minibatch_list_frequencies(datafp, self.settings['batch_size']) # Stop condition if len(wordids) == 0: break # print'---num_minibatch:%d---'%(j) (time_e, time_m, theta) = new2_online_ope.static_online(wordids, wordcts) # Compute sparsity sparsity = utilities.compute_sparsity(theta, theta.shape[0], theta.shape[1], 't') # Compute perplexities LD2 = utilities.compute_perplexities_vb(new2_online_ope._lambda, self.settings['alpha'], self.settings['eta'], self.settings['iter_infer'], self.test_data) # Search top words of each topics list_tops = utilities.list_top(new2_online_ope._lambda, self.tops) # Write files utilities.write_file(i, j, new2_online_ope._lambda, time_e, time_m, theta, sparsity, LD2, list_tops, self.tops, self.model_folder) datafp.close() # Write settings print'write setting ...' file_name = '%s/setting.txt'%(self.model_folder) utilities.write_setting(self.settings, file_name) # Write final model to file print'write final model ...' file_name = '%s/beta_final.dat'%(self.model_folder) utilities.write_topics(new2_online_ope._lambda, file_name) # Finish print'done!!!'
folder = sys.argv[3] filetest = sys.argv[4] fileprior = sys.argv[5] setting = util.read_setting(filesetting) n_tests = 1 # folder = "%s-TPS-%s-%s-%s" % (folder, setting['sigma'], setting['batch_size'], setting['n_topics']) print folder if not os.path.exists(folder): os.makedirs(folder) else: print "Folder existed" exit() ft = open(filetrain, 'r') util.write_setting(folder, setting) strm = Streaming.Streaming(fileprior, setting['alpha'], setting['n_topics'], setting['n_terms'], setting['n_infer'], setting['learning_rate'], setting['sigma']) (wordinds1, wordcnts1, wordinds2, wordcnts2) = util.read_test(filetest, n_tests) mini_batch = 0 while True: mini_batch = mini_batch + 1 (wordinds, wordcnts, full) = util.read_minibatch(ft, setting['batch_size']) if full == 1: break print "MINI BATCH %d" % (mini_batch) gamma = strm.run_stream(setting['batch_size'], wordinds, wordcnts) (LD, ld2) = util.compute_perplex(wordinds1, wordcnts1, wordinds2,
def main(): # Check input if len(sys.argv) != 5: print "usage: python run_Online_FW.py [train file] [setting file] [model folder] [test data folder]" exit() # Get environment variables train_file = sys.argv[1] setting_file = sys.argv[2] model_folder = sys.argv[3] test_data_folder = sys.argv[4] tops = 10 # int(sys.argv[5]) # Create model folder if it doesn't exist if os.path.exists(model_folder): shutil.rmtree(model_folder) os.makedirs(model_folder) # Read settings print "reading setting ..." ddict = utilities.read_setting(setting_file) print "write setting ..." file_name = "%s/setting.txt" % (model_folder) utilities.write_setting(ddict, file_name) # Read data for computing perplexities print "read data for computing perplexities ..." (wordids_1, wordcts_1, wordids_2, wordcts_2) = utilities.read_data_for_perpl(test_data_folder) # Initialize the algorithm print "initialize the algorithm ..." online_fw = Online_FW.OnlineFW( ddict["num_docs"], ddict["num_terms"], ddict["num_topics"], ddict["eta"], ddict["tau0"], ddict["kappa"], ddict["iter_infer"], ) # Start print "start!!!" i = 0 while i < ddict["iter_train"]: i += 1 print "\n***iter_train:%d***\n" % (i) datafp = open(train_file, "r") j = 0 while True: j += 1 (wordids, wordcts) = utilities.read_minibatch_list_frequencies(datafp, ddict["batch_size"]) # Stop condition if len(wordids) == 0: break # print "---num_minibatch:%d---" % (j) (time_e, time_m, theta) = online_fw.static_online(ddict["batch_size"], wordids, wordcts) # Compute sparsity sparsity = utilities.compute_sparsity(theta, theta.shape[0], theta.shape[1], "t") # Compute perplexities LD2 = utilities.compute_perplexities_fw( online_fw._lambda, ddict["iter_infer"], wordids_1, wordcts_1, wordids_2, wordcts_2 ) # Search top words of each topics list_tops = utilities.list_top(online_fw._lambda, tops) # Write files utilities.write_file( i, j, online_fw._lambda, time_e, time_m, theta, sparsity, LD2, list_tops, tops, model_folder ) datafp.close() # Write final model to file file_name = "%s/lambda_final.dat" % (model_folder) utilities.write_topics(online_fw._lambda, file_name) # Finish print "done!!!"
def main(): # Check input if len(sys.argv) != 5: print( "usage: python run_ML_OPE.py [train file] [setting file] [model folder] [test data folder]" ) exit() # Get environment variables train_file = sys.argv[1] setting_file = sys.argv[2] model_folder = sys.argv[3] test_data_folder = sys.argv[4] # Create model folder if it doesn't exist if os.path.exists(model_folder): shutil.rmtree(model_folder) os.makedirs(model_folder) # Read settings print('reading setting ...') ddict = utilities.read_setting(setting_file) print('write setting ...') file_name = '%s/setting.txt' % (model_folder) utilities.write_setting(ddict, file_name) # Read data for computing perplexities print('read data for computing perplexities ...') (wordids_1, wordcts_1, wordids_2, wordcts_2) = \ utilities.read_data_for_perpl(test_data_folder) # ============================================= TILL HERE OKAY [0] ============================================= # Initialize the algorithm print('initialize the algorithm ...') ml_ope = ML_OPE.MLOPE(ddict['num_terms'], ddict['num_topics'], ddict['alpha'], ddict['tau0'], ddict['kappa'], ddict['iter_infer']) # Start print('start!!!') i = 0 list_tops = [] while i < ddict['iter_train']: i += 1 print('\n***iter_train:%d***\n' % (i)) datafp = open(train_file, 'r') j = 0 while True: j += 1 (wordids, wordcts) = utilities.read_minibatch_list_frequencies( datafp, ddict['batch_size']) # Stop condition if len(wordids) == 0: break # print('---num_minibatch:%d---' % (j)) (time_e, time_m, theta) = ml_ope.static_online(ddict['batch_size'], wordids, wordcts) # ========================= TILL HERE OKAY [1] ====================================== # Compute sparsity sparsity = utilities.compute_sparsity(theta, theta.shape[0], theta.shape[1], 't') # print(sparsity) # for Testing Sparsity of 1st theta # print(theta[0,:]) # for Testing Sparsity of 1st theta # Compute perplexities # LD2 = utilities.compute_perplexities_vb(ml_ope.beta, ddict['alpha'], ddict['eta'], ddict['iter_infer'], \ # wordids_1, wordcts_1, wordids_2, wordcts_2) LD2 = None # Saving previous list_tops for diff_list_tops() below prev_list_tops = list_tops # Search top words of each topics list_tops = utilities.list_top(ml_ope.beta, ddict['tops']) # TODO: add [last 25% avg diff count] to new file to compare later with other settings # Calculate and print difference between old and current list_tops utilities.diff_list_tops(list_tops, prev_list_tops, i) # Write files utilities.write_file(i, j, ml_ope.beta, time_e, time_m, theta, sparsity, LD2, list_tops, model_folder) datafp.close() # Write final model to file file_name = '%s/beta_final.dat' % (model_folder) utilities.write_topics(ml_ope.beta, file_name) # Finish print('done!!!')
def main(): # Check input if len(sys.argv) != 5: print "usage: python run_ML_FW.py [train file] [setting file] [model folder] [test data folder]" exit() # Get environment variables train_file = sys.argv[1] setting_file = sys.argv[2] model_folder = sys.argv[3] test_data_folder = sys.argv[4] tops = 10 #int(sys.argv[5]) # Create model folder if it doesn't exist if os.path.exists(model_folder): shutil.rmtree(model_folder) os.makedirs(model_folder) # Read settings print 'reading setting ...' ddict = utilities.read_setting(setting_file) print 'write setting ...' file_name = '%s/setting.txt' % (model_folder) utilities.write_setting(ddict, file_name) # Read data for computing perplexities print 'read data for computing perplexities ...' (wordids_1, wordcts_1, wordids_2, wordcts_2) = \ utilities.read_data_for_perpl(test_data_folder) # Initialize the algorithm print 'initialize the algorithm ...' ml_fw = ML_FW.MLFW(ddict['num_terms'], ddict['num_topics'], ddict['tau0'], ddict['kappa'], ddict['iter_infer']) # Start print 'start!!!' i = 0 while i < ddict['iter_train']: i += 1 print '\n***iter_train:%d***\n' % (i) datafp = open(train_file, 'r') j = 0 while True: j += 1 (wordids, wordcts) = utilities.read_minibatch_list_frequencies( datafp, ddict['batch_size']) # Stop condition if len(wordids) == 0: break # print '---num_minibatch:%d---' % (j) (time_e, time_m, theta) = ml_fw.static_online(ddict['batch_size'], wordids, wordcts) # Compute sparsity sparsity = utilities.compute_sparsity(theta, theta.shape[0], theta.shape[1], 't') # Compute perplexities LD2 = utilities.compute_perplexities_fw(ml_fw.beta, ddict['iter_infer'], \ wordids_1, wordcts_1, wordids_2, wordcts_2) # Search top words of each topics list_tops = utilities.list_top(ml_fw.beta, tops) # Write files utilities.write_file(i, j, ml_fw.beta, time_e, time_m, theta, sparsity, LD2, list_tops, tops, model_folder) datafp.close() # Write final model to file file_name = '%s/beta_final.dat' % (model_folder) utilities.write_topics(ml_fw.beta, file_name) # Finish print 'done!!!'