Console.log("Test Acc:", score[1]) if args["predict"] != None and args["predict"] != "False": if args["predict"] != "True": Console.info("Predict for", args["predict"]) else: Console.info("Predict...") # new instance where we do not know the answer Xnew = X_train Xnew = np.array(Xnew) # make a prediction ynew = model.predict(Xnew) error_count = 0 for i in range(len(ynew)): predict = 1 if ynew[i][0] > 0.5 else 0 if y_train[i] != predict: error_count = error_count + 1 Console.error( "ID:", i, "Original", y_train[i], "Predict", predict, "-", str(math.trunc(ynew[i][0] * 100) / 100), ) Console.wran("Img with error", error_count)
Console.info("Fix image colors") X_img = processeImg(files, y_lower_upper) Console.info("Run model_valid_hand") files = [] X_to_predict = [] for img_file, img, hist in X_img: files.append((img_file, img)) X_to_predict.append(hist) X_to_predict = np.array(X_to_predict) # make a prediction y_valid_hand = model_valid_hand.predict(X_to_predict) Console.info("Saveing image..") total_file = len(files) for i in range(total_file): img_file, img = files[i] progress = float(i / total_file), (i + 1) # updateProgress(progress[0], progress[1], total_file, img_file) if y_valid_hand[i][0] > 0.5: path = os.path.join(__location__, "deep_fight", "hand", img_file) else: path = os.path.join(__location__, "deep_fight", "not_hand", img_file) cv2.imwrite(path, img) if y_valid_hand[i][0] < 0.6 and y_valid_hand[i][0] > 0.4: Console.wran("Image:", img_file, "hand valid:", y_valid_hand[i][0]) # updateProgress(1, total_file, total_file, img_file) Console.info("Proeces", total_file, "images") # para creae las iagenes en capetas separadas