Example #1
0
def search_page():
    logger.info("in search_page")
    logger.info(request.url)
    result = None
    if USE_REDIS:
        with Bench("Trying Redis cache"):
            key = "search_results:v1:" + json.dumps(request.args, sort_keys=True)
            logger.debug("key is:", pf(key))
            result = Redis.get(key)
            if result:
                logger.info("Redis cache hit on search results!")
                result = pickle.loads(result)
    else:
        logger.info("Skipping Redis cache (USE_REDIS=False)")

    logger.info("request.args is", request.args)
    the_search = search_results.SearchResultPage(request.args)
    result = the_search.__dict__
    valid_search = result['search_term_exists']

    logger.debugf("result", result)

    if USE_REDIS and valid_search:
        Redis.set(key, pickle.dumps(result, pickle.HIGHEST_PROTOCOL))
        Redis.expire(key, 60*60)

    if valid_search:
        return render_template("search_result_page.html", **result)
    else:
        return render_template("search_error.html")
Example #2
0
def create_temp_trait():
    logger.info(request.url)
    print("REQUEST.FORM:", request.form)
    #template_vars = submit_trait.SubmitTrait(request.form)

    doc = docs.Docs("links")
    return render_template("links.html", **doc.__dict__)
Example #3
0
def ctl_results():
    logger.info("In ctl, request.form is:", request.form)
    logger.info(request.url)
    ctl = ctl_analysis.CTL()                                  # Start R, load the package and pointers and create the analysis
    ctlA = ctl.run_analysis(request.form)                     # Start the analysis, a ctlA object should be a separate long running thread
    result = ctl.process_results(ctlA)                        # After the analysis is finished store the result
    return render_template("ctl_results.html", **result)      # Display them using the template
Example #4
0
 def loadImage(self, path, name):
     logger.info("pre-loading imgage results:", self.results[path])
     imgfile = open(self.results[path], 'rb')
     imgdata = imgfile.read()
     imgB64 = imgdata.encode("base64")
     bytesarray = array.array('B', imgB64)
     self.results[name] = bytesarray
Example #5
0
def sharing_info_page():
    """Info page displayed when the user clicks the "Info" button next to the dataset selection"""
    logger.info("In sharing_info_page")
    logger.error(request.url)
    fd = webqtlFormData.webqtlFormData(request.args)
    template_vars = SharingInfoPage.SharingInfoPage(fd)
    return template_vars
Example #6
0
def corr_scatter_plot_page():
    logger.info(request.url)
    template_vars = corr_scatter_plot.CorrScatterPlot(request.args)
    template_vars.js_data = json.dumps(template_vars.js_data,
                                       default=json_default_handler,
                                       indent="   ")
    return render_template("corr_scatterplot.html", **template_vars.__dict__)
Example #7
0
def export():
    logger.info("request.form:", request.form)
    svg_xml = request.form.get("data", "Invalid data")
    filename = request.form.get("filename", "manhattan_plot_snp")
    response = Response(svg_xml, mimetype="image/svg+xml")
    response.headers["Content-Disposition"] = "attachment; filename=%s"%filename
    return response
Example #8
0
def wcgna_results():
    logger.info("In wgcna, request.form is:", request.form)
    logger.info(request.url)
    wgcna = wgcna_analysis.WGCNA()                                # Start R, load the package and pointers and create the analysis
    wgcnaA = wgcna.run_analysis(request.form)                     # Start the analysis, a wgcnaA object should be a separate long running thread
    result = wgcna.process_results(wgcnaA)                        # After the analysis is finished store the result
    return render_template("wgcna_results.html", **result)        # Display them using the template
Example #9
0
 def process_results(self, results):
     logger.info("Processing CTL output")
     template_vars = {}
     template_vars["results"] = self.results
     template_vars["elements"] = self.elements
     self.render_image(self.results)
     sys.stdout.flush()
     return(dict(template_vars))
Example #10
0
def gsearchact():
    logger.info(request.url)
    result = gsearch.GSearch(request.args).__dict__
    type = request.args['type']
    if type == "gene":
        return render_template("gsearch_gene.html", **result)
    elif type == "phenotype":
        return render_template("gsearch_pheno.html", **result)
Example #11
0
    def process_results(self, results):
        logger.info("Processing PheWAS output")
        # TODO: get the PDF in the temp folder, and display it to the user
        template_vars = {}
        template_vars["results"] = self.results
        self.render_image(self.results)
        template_vars["R_debuglog"] = self.results['R_debuglog']

        return(dict(template_vars))
Example #12
0
def export_traits_csv():
    """CSV file consisting of the traits from the search result page"""
    logger.info("In export_traits_csv")
    logger.info("request.form:", request.form)
    csv_data = export_traits.export_search_results_csv(request.form)

    return Response(csv_data,
                    mimetype='text/csv',
                    headers={"Content-Disposition":"attachment;filename=trait_list.csv"})
Example #13
0
def init_db():
    # import all modules here that might define models so that
    # they will be registered properly on the metadata.  Otherwise
    # you will have to import them first before calling init_db()
    #import yourapplication.models
    import wqflask.model
    logger.debug("Creating all model metadata")
    Base.metadata.create_all(bind=engine)
    logger.info("Done creating all model metadata")
Example #14
0
def export_mapping_results():
    logger.info("request.form:", request.form)
    logger.info(request.url)
    file_path = request.form.get("results_path")
    results_csv = open(file_path, "r").read()
    response = Response(results_csv,
                        mimetype='text/csv',
                        headers={"Content-Disposition":"attachment;filename=mapping_results.csv"})

    return response
Example #15
0
 def __init__(self):
     ("Initialization of PheWAS")
     # TODO: Loading the package should only be done once, since it is quite expensive
     logger.info(r_library("auwerx"))                                                         # Load the auwerx package
     self.r_create_Pheno_aligner = ro.r["create.Pheno_aligner"]                         # Map the create.Pheno_aligner function
     self.r_calculate_all_pvalue_parallel = ro.r["calculate.all.pvalue.parallel"]       # Map the calculate.all.pvalue.parallel function
     self.r_PheWASManhattan = ro.r["PheWASManhattan"]                                   # Map the PheWASManhattan function
     self.r_Stop = ro.r["throwStopError"]                                   # Map the PheWASManhattan function
     self.r_PyLoadData    = ro.r["PyLoadData"]          # Map the load function
     logger.info("Initialization of PheWAS done !")
Example #16
0
def loading_page():
    logger.info(request.url)
    initial_start_vars = request.form
    logger.debug("Marker regression called with initial_start_vars:", initial_start_vars.items())
    #temp_uuid = initial_start_vars['temp_uuid']
    wanted = (
        'temp_uuid',
        'trait_id',
        'dataset',
        'method',
        'trimmed_markers',
        'selected_chr',
        'chromosomes',
        'mapping_scale',
        'score_type',
        'suggestive',
        'significant',
        'num_perm',
        'permCheck',
        'perm_output',
        'num_bootstrap',
        'bootCheck',
        'bootstrap_results',
        'LRSCheck',
        'covariates',
        'maf',
        'use_loco',
        'manhattan_plot',
        'control_marker',
        'control_marker_db',
        'do_control',
        'genofile',
        'pair_scan',
        'startMb',
        'endMb',
        'graphWidth',
        'lrsMax',
        'additiveCheck',
        'showSNP',
        'showGenes',
        'viewLegend',
        'haplotypeAnalystCheck',
        'mapmethod_rqtl_geno',
        'mapmodel_rqtl_geno'
    )
    start_vars_container = {}
    start_vars = {}
    for key, value in initial_start_vars.iteritems():
        if key in wanted or key.startswith(('value:')):
            start_vars[key] = value

    start_vars_container['start_vars'] = start_vars
    rendered_template = render_template("loading.html", **start_vars_container)

    return rendered_template
Example #17
0
def export_pdf():
    import cairosvg
    logger.info("request.form:", request.form)
    svg_xml = request.form.get("data", "Invalid data")
    logger.info("svg_xml:", svg_xml)
    filename = request.form.get("filename", "interval_map_pdf")
    filepath = GENERATED_IMAGE_DIR+filename
    pdf_file = cairosvg.svg2pdf(bytestring=svg_xml)
    response = Response(pdf_file, mimetype="application/pdf")
    response.headers["Content-Disposition"] = "attachment; filename=%s"%filename
    return response
Example #18
0
def index_page():
    logger.info("Sending index_page")
    params = request.args
    if 'import_collections' in params:
        import_collections = params['import_collections']
        if import_collections == "true":
            g.cookie_session.import_traits_to_user()
    if USE_GN_SERVER:
        # The menu is generated using GN_SERVER
        return render_template("index_page.html", gn_server_url = GN_SERVER_URL, version=GN_VERSION)
    else:
        # Old style static menu (OBSOLETE)
        return render_template("index_page_orig.html", version=GN_VERSION)
Example #19
0
def show_trait_page():
    logger.info(request.url)
    template_vars = show_trait.ShowTrait(request.args)
    #logger.info("js_data before dump:", template_vars.js_data)
    template_vars.js_data = json.dumps(template_vars.js_data,
                                       default=json_default_handler,
                                       indent="   ")
    # Sorting the keys messes up the ordered dictionary, so don't do that
                                       #sort_keys=True)

    #logger.info("js_data after dump:", template_vars.js_data)
    #logger.info("show_trait template_vars:", pf(template_vars.__dict__))
    return render_template("show_trait.html", **template_vars.__dict__)
Example #20
0
def corr_matrix_page():
    logger.info("In corr_matrix, request.form is:", pf(request.form))

    start_vars = request.form
    traits = [trait.strip() for trait in start_vars['trait_list'].split(',')]
    if traits[0] != "":
        template_vars = show_corr_matrix.CorrelationMatrix(start_vars)
        template_vars.js_data = json.dumps(template_vars.js_data,
                                           default=json_default_handler,
                                           indent="   ")

        return render_template("correlation_matrix.html", **template_vars.__dict__)
    else:
        return render_template("empty_collection.html", **{'tool':'Correlation Matrix'})
Example #21
0
def network_graph_page():
    logger.info("In network_graph, request.form is:", pf(request.form))

    start_vars = request.form
    traits = [trait.strip() for trait in start_vars['trait_list'].split(',')]
    if traits[0] != "":
        template_vars = network_graph.NetworkGraph(start_vars)
        template_vars.js_data = json.dumps(template_vars.js_data,
                                           default=json_default_handler,
                                           indent="   ")

        return render_template("network_graph.html", **template_vars.__dict__)
    else:
        return render_template("empty_collection.html", **{'tool':'Network Graph'})
Example #22
0
def comp_bar_chart_page():
    logger.info("In comp bar chart, request.form is:", pf(request.form))
    logger.info(request.url)

    start_vars = request.form

    traits = [trait.strip() for trait in start_vars['trait_list'].split(',')]
    if traits[0] != "":
        template_vars = comparison_bar_chart.ComparisonBarChart(request.form)
        template_vars.js_data = json.dumps(template_vars.js_data,
                                               default=json_default_handler,
                                               indent="   ")

        result = template_vars.__dict__
        rendered_template = render_template("comparison_bar_chart.html", **result)
    else:
        rendered_template = render_template("empty_collection.html", **{'tool':'Comparison Bar Chart'})

    return rendered_template
Example #23
0
def tmp_page(img_path):
    logger.info("In tmp_page")
    logger.info("img_path:", img_path)
    logger.info(request.url)
    initial_start_vars = request.form
    logger.info("initial_start_vars:", initial_start_vars)
    imgfile = open(GENERATED_IMAGE_DIR + img_path, 'rb')
    imgdata = imgfile.read()
    imgB64 = imgdata.encode("base64")
    bytesarray = array.array('B', imgB64)
    return render_template("show_image.html",
                            img_base64 = bytesarray )
Example #24
0
def export_perm_data():
    """CSV file consisting of the permutation data for the mapping results"""
    logger.info(request.url)
    num_perm = float(request.form['num_perm'])
    perm_data = json.loads(request.form['perm_results'])

    buff = StringIO.StringIO()
    writer = csv.writer(buff)
    writer.writerow(["Suggestive LRS (p=0.63) = " + str(perm_data[int(num_perm*0.37-1)])])
    writer.writerow(["Significant LRS (p=0.05) = " + str(perm_data[int(num_perm*0.95-1)])])
    writer.writerow(["Highly Significant LRS (p=0.01) = " + str(perm_data[int(num_perm*0.99-1)])])
    writer.writerow("")
    writer.writerow([str(num_perm) + " Permutations"])
    writer.writerow("")
    for item in perm_data:
        writer.writerow([item])
    csv_data = buff.getvalue()
    buff.close()

    return Response(csv_data,
                    mimetype='text/csv',
                    headers={"Content-Disposition":"attachment;filename=perm_data.csv"})
Example #25
0
def export_trait_csv():
    """CSV file consisting of the sample data from the trait data and analysis page"""
    logger.info("In export_trait_csv")
    logger.info("request.form:", request.form)
    logger.info(request.url)
    sample_data = export_trait_data.export_sample_table(request.form)

    logger.info("sample_data - type: %s -- size: %s" % (type(sample_data), len(sample_data)))

    buff = StringIO.StringIO()
    writer = csv.writer(buff)
    for row in sample_data:
        writer.writerow(row)
    csv_data = buff.getvalue()
    buff.close()

    return Response(csv_data,
                    mimetype='text/csv',
                    headers={"Content-Disposition":"attachment;filename=sample_data.csv"})
Example #26
0
 def __init__(self):
     logger.info("Initialization of CTL")
     #log = r_file("/tmp/genenetwork_ctl.log", open = "wt")
     #r_sink(log)                                                       # Uncomment the r_sink() commands to log output from stdout/stderr to a file
     #r_sink(log, type = "message")
     r_library("ctl")                                                   # Load CTL - Should only be done once, since it is quite expensive
     r_options(stringsAsFactors = False)
     logger.info("Initialization of CTL done, package loaded in R session")
     self.r_CTLscan            = ro.r["CTLscan"]                        # Map the CTLscan function
     self.r_CTLsignificant     = ro.r["CTLsignificant"]                 # Map the CTLsignificant function
     self.r_lineplot           = ro.r["ctl.lineplot"]                   # Map the ctl.lineplot function
     self.r_plotCTLobject      = ro.r["plot.CTLobject"]                 # Map the CTLsignificant function
     self.nodes_list = []
     self.edges_list = []
     logger.info("Obtained pointers to CTL functions")
Example #27
0
def export_trait_excel():
    """Excel file consisting of the sample data from the trait data and analysis page"""
    logger.info("In export_trait_excel")
    logger.info("request.form:", request.form)
    logger.info(request.url)
    sample_data = export_trait_data.export_sample_table(request.form)

    logger.info("sample_data - type: %s -- size: %s" % (type(sample_data), len(sample_data)))

    buff = StringIO.StringIO()
    workbook = xlsxwriter.Workbook(buff, {'in_memory': True})
    worksheet = workbook.add_worksheet()
    for i, row in enumerate(sample_data):
        worksheet.write(i, 0, row[0])
        worksheet.write(i, 1, row[1])
        if len(row) > 2:
            worksheet.write(i, 2, row[2])
    workbook.close()
    excel_data = buff.getvalue()
    buff.close()

    return Response(excel_data,
                    mimetype='application/vnd.ms-excel',
                    headers={"Content-Disposition":"attachment;filename=sample_data.xlsx"})
Example #28
0
def get_transform_vals(dataset, trait):
    es = get_elasticsearch_connection(for_user=False)

    logger.info("DATASET NAME:", dataset.name)

    query = '{"bool": {"must": [{"match": {"name": "%s"}}, {"match": {"dataset": "%s"}}]}}' % (trait.name, dataset.name)

    es_body = {
          "query": {
            "bool": {
              "must": [
                {
                  "match": {
                    "name": "%s" % (trait.name)
                  }
                },
                {
                  "match": {
                    "dataset": "%s" % (dataset.name)
                  }
                }
              ]
            }
          }
    }

    response = es.search( index = "traits", doc_type = "trait", body = es_body )
    logger.info("THE RESPONSE:", response)
    results = response['hits']['hits']

    if len(results) > 0:
        samples = results[0]['_source']['samples']

        sample_dict = {}
        for sample in samples:
            sample_dict[sample['name']] = sample['qnorm']

        logger.info("SAMPLE DICT:", sample_dict)
        return sample_dict
    else:
        return None
Example #29
0
def corr_compute_page():
    logger.info("In corr_compute, request.form is:", pf(request.form))
    #fd = webqtlFormData.webqtlFormData(request.form)
    template_vars = show_corr_results.CorrelationResults(request.form)
    return render_template("correlation_page.html", **template_vars.__dict__)
Example #30
0
def phewas():
    logger.info("In phewas, request.form is:", request.form)             # We are going to get additional user input for the analysis
    phewasO = phewas_analysis.PheWAS()                                            # Start R, load the package and pointers and create the analysis
    phewasA = phewasO.run_analysis(request.form)
    result  = phewasO.process_results(phewasA)                           # After the analysis is finished store the result
    return render_template("phewas_analysis.html", **result)             # Display them using the template
Example #31
0
                               and snap_id <=  %s
                               and parsing_schema_name not in ('SYSTEM','SYS','DBSNMP','MZHANG','YANGLI')
                               and parsing_schema_name is not null
                             group by sql_id,parsing_schema_name) sqt,
                           dba_hist_sqltext st
                     where st.sql_id(+) = sqt.sql_id
                       and st.dbid(+) =  %s
                     order by nvl(sqt.elap, -1) desc, sqt.sql_id)
                     order by Elapsed_Time_Per_Exec  desc
            ''' % (dbid, inst_num, beg_snap, end_snap, dbid)
    engine = create_engine(DB_CONN_STRING_1, poolclass=NullPool)
    return pd.read_sql_query(sql, engine)


if __name__ == '__main__':
    logger.info('开始')
    #加载有卡数据

    delDirectory()

    dbid = getDBInfo().values
    if not dbid[0][0] or dbid[0][0] == 'null':
        logger.info('获取的dbid失败:%s' % dbid[0][0])
    else:
        logger.info('成功获取dbid:%s' % dbid[0][0])
    '''
        抓取50.51上所有的sql信息
    '''
    now = datetime.datetime.now()
    days = 1
    oneday = datetime.timedelta(days=days)
Example #32
0
def help():
    logger.info(request.url)
    doc = Docs("help", request.args)
    return render_template("docs.html", **doc.__dict__)
Example #33
0
def mediation():
    logger.info("In mediation, request.form is:", request.form)             # We are going to get additional user input for the analysis
    return render_template("mediation_analysis.html", **request.form)          # Display them using the template
Example #34
0
def submit_bnw():
    logger.info(request.url)
    return render_template("empty_collection.html",
                           **{'tool': 'Correlation Matrix'})
Example #35
0
def gsearch_updating():
    logger.info("REQUEST ARGS:", request.values)
    logger.info(request.url)
    result = UpdateGSearch(request.args).__dict__
    return result['results']
Example #36
0
    def run_analysis(self, requestform):
        logger.info("Starting PheWAS analysis on dataset")
        genofilelocation = locate(
            "BXD.geno", "genotype")  # Get the location of the BXD genotypes
        precompfile = locate_phewas(
            "PheWAS_pval_EMMA_norm.RData",
            "auwerx")  # Get the location of the pre-computed EMMA results

        # Get user parameters, trait_id and dataset, and store/update them in self
        self.trait_id = requestform["trait_id"]
        self.datasetname = requestform["dataset"]
        self.dataset = data_set.create_dataset(self.datasetname)
        self.region = int(requestform["num_region"])
        self.mtadjust = str(requestform["sel_mtadjust"])

        # Logger.Info some debug
        logger.info("self.trait_id:" + self.trait_id + "\n")
        logger.info("self.datasetname:" + self.datasetname + "\n")
        logger.info("self.dataset.type:" + self.dataset.type + "\n")

        # GN Magic ?
        self.this_trait = GeneralTrait(dataset=self.dataset,
                                       name=self.trait_id,
                                       get_qtl_info=False,
                                       get_sample_info=False)
        logger.info(vars(self.this_trait))

        # Set the values we need
        self.chr = str(self.this_trait.chr)
        self.mb = int(self.this_trait.mb)

        # logger.info some debug
        logger.info("location:" + self.chr + ":" + str(self.mb) + "+/-" +
                    str(self.region) + "\n")

        # Load in the genotypes file *sigh* to make the markermap
        parser = genofile_parser.ConvertGenoFile(genofilelocation)
        parser.process_csv()
        snpinfo = []
        for marker in parser.markers:
            snpinfo.append(marker["name"])
            snpinfo.append(marker["chr"])
            snpinfo.append(marker["Mb"])

        rnames = r_seq(1, len(parser.markers))
        # Create the snp aligner object out of the BXD genotypes
        snpaligner = ro.r.matrix(snpinfo,
                                 nrow=len(parser.markers),
                                 dimnames=r_list(rnames,
                                                 r_c("SNP", "Chr", "Pos")),
                                 ncol=3,
                                 byrow=True)

        # Create the phenotype aligner object using R
        phenoaligner = self.r_create_Pheno_aligner()

        self.results = {}
        self.results['imgurl1'] = webqtlUtil.genRandStr("phewas_") + ".png"
        self.results['imgloc1'] = GENERATED_IMAGE_DIR + self.results['imgurl1']
        self.results['mtadjust'] = self.mtadjust
        logger.info("IMAGE AT:", self.results['imgurl1'])
        logger.info("IMAGE AT:", self.results['imgloc1'])
        # Create the PheWAS plot (The gene/probe name, chromosome and gene/probe positions should come from the user input)
        # TODO: generate the PDF in the temp folder, with a unique name
        assert (precompfile)
        assert (phenoaligner)
        assert (snpaligner)
        phewasres = self.r_PheWASManhattan("Test", precompfile, phenoaligner,
                                           snpaligner, "None", self.chr,
                                           self.mb, self.region,
                                           self.results['imgloc1'],
                                           self.mtadjust)
        self.results['phewas1'] = phewasres[0]
        self.results['phewas2'] = phewasres[1]
        self.results['tabulardata'] = phewasres[2]
        self.results['R_debuglog'] = phewasres[3]

        #self.r_PheWASManhattan(allpvalues)
        #self.r_Stop()

        logger.info("Initialization of PheWAS done !")
Example #37
0
        rate2_1['cost'] = rate2_1.apply(lambda row: otpGetCardType(row['from_card_type']), axis=1)
        logger.info('无银行卡类型 : %s 行.' % rate2_1.shape[0])
        df = [rate_1,rate_2,rate1_1,rate1_2,rate2_1]
        
    logger.info('合并数据 开始')
    rate2 = pd.concat(df)
    logger.info('完成了所有有卡成本处理 : %s 行.' % (rate2.shape[0]))
    gc.collect()
    
    #计算利润
    logger.info('利润计算 开始')
    rate2['grain'] = rate2.apply(lambda row: OptGrain(row['trans_charge'],row['cost']), axis=1)
    logger.info('利润计算处理 : %s 行.' % (rate2.shape[0]))
    return rate2

if __name__ == '__main__':
    logger.info('开始')
    # 加载有卡数据
    rate2 = getHaveCardData()    
       
    logger.info('生成excel文件,开始')
    saveToExcel(rate2)
    logger.info('生成execl文件,结束')
    
    logger.info('打包并发送数据,开始')
    sendMailInfo()
    logger.info('打包并发送数据,结束')
      
    
    
Example #38
0
        datagenerator_obj = DataGenerator(count, path)
        processed_data = datagenerator_obj.read_xls_data()

        if field_and_data_type_list:

            # this code is to process fetched field name and datatype from console
            field_data_type_tuple = ()

            for element in field_and_data_type_list:
                field_data_type_tuple += (element, )
                if str(element).lower().strip() == 'value':
                    continue
                if len(field_data_type_tuple) >= 2:
                    processed_data.append(field_data_type_tuple)
                    field_data_type_tuple = ()

        if processed_data:
            datagenerator_obj.create_files(processed_data)

            minute, second = divmod(current_time() - begin_time, 60)

            logger.info(
                "Execution of {} records ended in : {:0.0f} minute {:0.02f} second"
                .format(count, minute, second))

        logger.info("End of script....")

    except Exception as e:
        logger.error(e)
Example #39
0
    def __init__(self, start_vars, temp_uuid):

        helper_functions.get_species_dataset_trait(self, start_vars)

        self.temp_uuid = temp_uuid #needed to pass temp_uuid to gn1 mapping code (marker_regression_gn1.py)

        self.json_data = {}
        self.json_data['lodnames'] = ['lod.hk']

        self.samples = [] # Want only ones with values
        self.vals = []

        all_samples_ordered = self.dataset.group.all_samples_ordered()
        primary_sample_names = list(all_samples_ordered)

        for sample in self.dataset.group.samplelist:
            # sample is actually the name of an individual
            in_trait_data = False
            for item in self.this_trait.data:
                if self.this_trait.data[item].name == sample:
                    value = start_vars['value:' + self.this_trait.data[item].name]
                    self.samples.append(self.this_trait.data[item].name)
                    self.vals.append(value)
                    in_trait_data = True
                    break
            if not in_trait_data:
                value = start_vars.get('value:' + sample)
                if value:
                    self.samples.append(sample)
                    self.vals.append(value)

        self.mapping_method = start_vars['method']
        if start_vars['manhattan_plot'] == "True":
            self.manhattan_plot = True
        else:
            self.manhattan_plot = False

        self.maf = start_vars['maf'] # Minor allele frequency
        self.suggestive = ""
        self.significant = ""
        self.pair_scan = False # Initializing this since it is checked in views to determine which template to use
        self.score_type = "LRS" #ZS: LRS or LOD
        self.mapping_scale = "physic"
        self.num_perm = 0
        self.perm_output = []
        self.bootstrap_results = []

        #ZS: This is passed to GN1 code for single chr mapping
        self.selected_chr = -1
        if "selected_chr" in start_vars:
            if int(start_vars['selected_chr']) != -1: #ZS: Needs to be -1 if showing full map; there's probably a better way to fix this
                self.selected_chr = int(start_vars['selected_chr']) + 1
            else:
                self.selected_chr = int(start_vars['selected_chr'])
        if "startMb" in start_vars:
            self.startMb = start_vars['startMb']
        if "endMb" in start_vars:
            self.endMb = start_vars['endMb']
        if "graphWidth" in start_vars:
            self.graphWidth = start_vars['graphWidth']
        if "lrsMax" in start_vars:
            self.lrsMax = start_vars['lrsMax']
        if "haplotypeAnalystCheck" in start_vars:
            self.haplotypeAnalystCheck = start_vars['haplotypeAnalystCheck']
        if "startMb" in start_vars: #ZS: This is to ensure showGenes, Legend, etc are checked the first time you open the mapping page, since startMb will only not be set during the first load
            if "permCheck" in start_vars:
                self.permCheck = "ON"
            else:
                self.permCheck = False
            self.num_perm = int(start_vars['num_perm'])

            self.LRSCheck = start_vars['LRSCheck']

            if "showSNP" in start_vars:
                self.showSNP = start_vars['showSNP']
            else:
                self.showSNP = False

            if "showGenes" in start_vars:
                self.showGenes = start_vars['showGenes']
            else:
                self.showGenes = False

            if "viewLegend" in start_vars:
                self.viewLegend = start_vars['viewLegend']
            else:
                self.viewLegend = False
        else:
            try:
                if int(start_vars['num_perm']) > 0:
                    self.num_perm = int(start_vars['num_perm'])
            except:
                self.num_perm = 0

            self.LRSCheck = self.score_type
            if self.num_perm > 0:
                self.permCheck = "ON"
            else:
                self.permCheck = False
            self.showSNP = "ON"
            self.showGenes = "ON"
            self.viewLegend = "ON"

        self.dataset.group.get_markers()
        if self.mapping_method == "gemma":
            self.score_type = "LOD"
            self.manhattan_plot = True
            with Bench("Running GEMMA"):
                included_markers, p_values = gemma_mapping.run_gemma(self.dataset, self.samples, self.vals)
            with Bench("Getting markers from csv"):
                marker_obs = get_markers_from_csv(included_markers, p_values, self.dataset.group.name)
            results = marker_obs
        elif self.mapping_method == "rqtl_plink":
            results = self.run_rqtl_plink()
        elif self.mapping_method == "rqtl_geno":
            self.score_type = "LOD"
            self.mapping_scale = "morgan"
            self.control_marker = start_vars['control_marker']
            self.do_control = start_vars['do_control']
            self.method = start_vars['mapmethod_rqtl_geno']
            self.model = start_vars['mapmodel_rqtl_geno']
            if start_vars['pair_scan'] == "true":
                self.pair_scan = True
            if self.permCheck and self.num_perm > 0:
                perm_output, self.suggestive, self.significant, results = rqtl_mapping.run_rqtl_geno(self.vals, self.dataset, self.method, self.model, self.permCheck, self.num_perm, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan)
            else:
                results = rqtl_mapping.run_rqtl_geno(self.vals, self.dataset, self.method, self.model, self.permCheck, self.num_perm, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan)
        elif self.mapping_method == "reaper":
            if "startMb" in start_vars: #ZS: Check if first time page loaded, so it can default to ON
                if "additiveCheck" in start_vars:
                    self.additiveCheck = start_vars['additiveCheck']
                else:
                    self.additiveCheck = False

                if "bootCheck" in start_vars:
                    self.bootCheck = "ON"
                else:
                    self.bootCheck = False
                self.num_bootstrap = int(start_vars['num_bootstrap'])
            else:
                self.additiveCheck = "ON"
                try:
                    if int(start_vars['num_bootstrap']) > 0:
                        self.bootCheck = "ON"
                        self.num_bootstrap = int(start_vars['num_bootstrap'])
                    else:
                        self.bootCheck = False
                        self.num_bootstrap = 0
                except:
                    self.bootCheck = False
                    self.num_bootstrap = 0

            self.control_marker = start_vars['control_marker']
            self.do_control = start_vars['do_control']
            logger.info("Running qtlreaper")
            results = self.gen_reaper_results()
        elif self.mapping_method == "plink":
            results = self.run_plink()
        elif self.mapping_method == "pylmm":
            logger.debug("RUNNING PYLMM")
            if self.num_perm > 0:
                self.run_permutations(str(temp_uuid))
            results = self.gen_data(str(temp_uuid))
        else:
            logger.debug("RUNNING NOTHING")

        if self.pair_scan == True:
            self.qtl_results = []
            highest_chr = 1 #This is needed in order to convert the highest chr to X/Y
            for marker in results:
                if marker['chr1'] > 0 or marker['chr1'] == "X" or marker['chr1'] == "X/Y":
                    if marker['chr1'] > highest_chr or marker['chr1'] == "X" or marker['chr1'] == "X/Y":
                        highest_chr = marker['chr1']
                    if 'lod_score' in marker.keys():
                        self.qtl_results.append(marker)

            self.trimmed_markers = results

            for qtl in enumerate(self.qtl_results):
                self.json_data['chr1'].append(str(qtl['chr1']))
                self.json_data['chr2'].append(str(qtl['chr2']))
                self.json_data['Mb'].append(qtl['Mb'])
                self.json_data['markernames'].append(qtl['name'])

            self.js_data = dict(
                json_data = self.json_data,
                this_trait = self.this_trait.name,
                data_set = self.dataset.name,
                maf = self.maf,
                manhattan_plot = self.manhattan_plot,
                mapping_scale = self.mapping_scale,
                qtl_results = self.qtl_results
            )

        else:
            self.cutoff = 2
            self.qtl_results = []
            highest_chr = 1 #This is needed in order to convert the highest chr to X/Y
            for marker in results:
                if marker['chr'] > 0 or marker['chr'] == "X" or marker['chr'] == "X/Y":
                    if marker['chr'] > highest_chr or marker['chr'] == "X" or marker['chr'] == "X/Y":
                        highest_chr = marker['chr']
                    if ('lod_score' in marker.keys()) or ('lrs_value' in marker.keys()):
                        self.qtl_results.append(marker)

            self.trimmed_markers = trim_markers_for_table(results)

            self.json_data['chr'] = []
            self.json_data['pos'] = []
            self.json_data['lod.hk'] = []
            self.json_data['markernames'] = []

            self.json_data['suggestive'] = self.suggestive
            self.json_data['significant'] = self.significant

            #Need to convert the QTL objects that qtl reaper returns into a json serializable dictionary
            for index, qtl in enumerate(self.qtl_results):
                #if index<40:
                #    logger.debug("lod score is:", qtl['lod_score'])
                if qtl['chr'] == highest_chr and highest_chr != "X" and highest_chr != "X/Y":
                    #logger.debug("changing to X")
                    self.json_data['chr'].append("X")
                else:
                    self.json_data['chr'].append(str(qtl['chr']))
                self.json_data['pos'].append(qtl['Mb'])
                if 'lrs_value' in qtl.keys():
                    self.json_data['lod.hk'].append(str(qtl['lrs_value']))
                else:
                    self.json_data['lod.hk'].append(str(qtl['lod_score']))
                self.json_data['markernames'].append(qtl['name'])

            #Get chromosome lengths for drawing the interval map plot
            chromosome_mb_lengths = {}
            self.json_data['chrnames'] = []
            for key in self.species.chromosomes.chromosomes.keys():
                self.json_data['chrnames'].append([self.species.chromosomes.chromosomes[key].name, self.species.chromosomes.chromosomes[key].mb_length])
                chromosome_mb_lengths[key] = self.species.chromosomes.chromosomes[key].mb_length

            # logger.debug("json_data:", self.json_data)

            self.js_data = dict(
                result_score_type = self.score_type,
                json_data = self.json_data,
                this_trait = self.this_trait.name,
                data_set = self.dataset.name,
                maf = self.maf,
                manhattan_plot = self.manhattan_plot,
                mapping_scale = self.mapping_scale,
                chromosomes = chromosome_mb_lengths,
                qtl_results = self.qtl_results,
                num_perm = self.num_perm,
                perm_results = self.perm_output,
            )
Example #40
0
signal.signal(signal.SIGPIPE, signal.SIG_DFL)

BLUE = '\033[94m'
GREEN = '\033[92m'
BOLD = '\033[1m'
ENDC = '\033[0m'

import os

app.config['SECRET_KEY'] = os.urandom(24)

from utility.tools import WEBSERVER_MODE, get_setting_int

port = get_setting_int("SERVER_PORT")

logger.info("GN2 is running. Visit %shttp://localhost:%s/%s" %
            (BLUE, port, ENDC))

werkzeug_logger = logging.getLogger('werkzeug')

if WEBSERVER_MODE == 'DEBUG':
    app.run(host='0.0.0.0',
            port=port,
            debug=True,
            use_debugger=False,
            threaded=False,
            processes=0,
            use_reloader=True)
elif WEBSERVER_MODE == 'DEV':
    werkzeug_logger.setLevel(logging.WARNING)
    app.run(host='0.0.0.0',
            port=port,
Example #41
0
def sendMailInfo():
    import re
    now = datetime.datetime.now()
    m=re.match('.*(\d+)',CONF_ORDER_TIME)
    days = 1
    if m:
        days = int(m.groups()[0])
    oneday = datetime.timedelta(days=days)
    target_date = now - oneday + oneday
    target_date = target_date.strftime("%Y%m%d")
        
    zipDirectory = os.path.join(os.path.abspath(os.path.dirname(__file__)),'zipDir')
    if not os.path.exists(zipDirectory):
      os.mkdir(zipDirectory) 
      logger.info('临时目录不存在创建临时目录:'+zipDirectory)
    zipfileName=os.path.join(zipDirectory,'report_'+target_date+'.zip')
    
    if os.path.exists(zipfileName):
      os.remove(zipfileName) 
      logger.info('存在相同压缩文件名,删除历史数据:'+zipfileName)
    logger.info('创建压缩文件:'+zipfileName)
    
    if not os.path.exists('%s/result' % CUR_PATH):
       os.mkdir('%s/result' % CUR_PATH)
    fileDirectory = '%s/result' % CUR_PATH
    os.chdir(fileDirectory)
    os.system(("zip %s *")%(zipfileName))
    createZip(zipfileName,fileDirectory)
    files=getAttachFileList(fileDirectory)
    print files
    logger.info('压缩结束')
    
    mail_to=['*****@*****.**']
    port="25"
    m=Mail(port=port,mailTo=mail_to)
    try:
        logger.info('send mail starting....')
        subject='GEEDUN库TOP_10_SQL监控'
        content='When the REPORT has problems, please contact DBA!'
        m.sendMsg(subject,content,[zipfileName])
        logger.info('send mail end.')
    except:
        return    
Example #42
0
def docedit():
    logger.info(request.url)
    doc = docs.Docs(request.args['entry'])
    return render_template("docedit.html", **doc.__dict__)
Example #43
0
def sharing_info_page():
    """Info page displayed when the user clicks the "Info" button next to the dataset selection"""
    logger.info("In sharing_info_page")
    fd = webqtlFormData.webqtlFormData(request.args)
    template_vars = SharingInfoPage.SharingInfoPage(fd)
    return template_vars
Example #44
0
def getHaveCardData():
    logger.info('成本处理 开始')
    rate1 = getRateCostInfo()
    rate_1 = rate1[((rate1.from_card_type=='借记卡') | (rate1.from_card_type=='借贷合一') | (rate1.from_card_type=='预付卡')) & (rate1.backend_id=='posPay')]  
    rate_2 = rate1[((rate1.from_card_type=='准贷记卡') | (rate1.from_card_type=='贷记卡')) & (rate1.backend_id=='posPay')]
    if(rate_1.empty):
        logger.info('827借卡数据处理: 0 行.')
    else:
        rate_1['cost'] = rate_1.apply(lambda row: OptBorrowCost(row['r_borrow'],row['pay_amount']), axis=1)
        
    if(rate_2.empty):
        logger.info('827开头贷卡数据处理: 0 行.')
    else:
        rate_2['cost'] = rate_2.apply(lambda row: OptLoanCost(row['r_loan'],row['pay_amount']), axis=1)
    logger.info('827开头的有卡数据处理 : %s 行.' % (rate_1.shape[0] + rate_2.shape[0]))
    
    rate1_1 = rate1[((rate1.from_card_type=='借记卡') | (rate1.from_card_type=='借贷合一') | (rate1.from_card_type=='预付卡')) & (rate1.backend_id=='unionIcCardPay')]
    rate1_2 = rate1[((rate1.from_card_type=='准贷记卡') | (rate1.from_card_type=='贷记卡')) & (rate1.backend_id=='unionIcCardPay')]
    
    if(rate1_1.empty):
        logger.info('银联借卡数据处理: 0 行.')
    else:
        rate1_1['cost'] = rate1_1.apply(lambda row: OptYinLianCost(row['r_loan'],row['r_borrow'],row['pay_amount'],'borrow'), axis=1)
        
    if(rate1_2.empty):
        logger.info('银联贷卡数据处理: 0 行.')
    else:
        rate1_2['cost'] = rate1_2.apply(lambda row: OptYinLianCost(row['r_loan'],row['r_borrow'],row['pay_amount'],'loan'), axis=1)
    logger.info('853开头的有卡数据处理 : %s 行.' % (rate1_1.shape[0] + rate1_2.shape[0]))
    
    if(rate1[rate1.from_card_type=='-'].empty):
        logger.info('银行卡类型记录无异常 : 0 行')
        df = [rate_1,rate_2,rate1_1,rate1_2]
    else:
        rate2_1 = rate1[rate1.from_card_type=='-']
        rate2_1['cost'] = rate2_1.apply(lambda row: otpGetCardType(row['from_card_type']), axis=1)
        logger.info('无银行卡类型 : %s 行.' % rate2_1.shape[0])
        df = [rate_1,rate_2,rate1_1,rate1_2,rate2_1]
        
    logger.info('合并数据 开始')
    rate2 = pd.concat(df)
    logger.info('完成了所有有卡成本处理 : %s 行.' % (rate2.shape[0]))
    gc.collect()
    
    #计算利润
    logger.info('利润计算 开始')
    rate2['grain'] = rate2.apply(lambda row: OptGrain(row['trans_charge'],row['cost']), axis=1)
    logger.info('利润计算处理 : %s 行.' % (rate2.shape[0]))
    return rate2
Example #45
0
def security_tutorial_page():
    # ZS: Currently just links to GN1
    logger.info(request.url)
    return render_template("admin/security_help.html")
    def __init__(self, start_vars, temp_uuid):
        helper_functions.get_species_dataset_trait(self, start_vars)

        self.temp_uuid = temp_uuid  #needed to pass temp_uuid to gn1 mapping code (marker_regression_gn1.py)

        #ZS: Needed to zoom in or remap temp traits like PCA traits
        if "temp_trait" in start_vars and start_vars['temp_trait'] != "False":
            self.temp_trait = "True"
            self.group = self.dataset.group.name

        self.json_data = {}
        self.json_data['lodnames'] = ['lod.hk']

        #ZS: Sometimes a group may have a genofile that only includes a subset of samples
        genofile_samplelist = []
        if 'genofile' in start_vars:
            if start_vars['genofile'] != "":
                self.genofile_string = start_vars['genofile']
                self.dataset.group.genofile = self.genofile_string.split(
                    ":")[0]
                genofile_samplelist = get_genofile_samplelist(self.dataset)

        all_samples_ordered = self.dataset.group.all_samples_ordered()

        self.vals = []
        self.samples = []
        self.sample_vals = start_vars['sample_vals']
        sample_val_dict = json.loads(self.sample_vals)
        samples = sample_val_dict.keys()
        if (len(genofile_samplelist) != 0):
            for sample in genofile_samplelist:
                self.samples.append(sample)
                if sample in samples:
                    self.vals.append(sample_val_dict[sample])
                else:
                    self.vals.append("x")
        else:
            for sample in self.dataset.group.samplelist:
                if sample in samples:
                    self.vals.append(sample_val_dict[sample])
                    self.samples.append(sample)

        if 'n_samples' in start_vars:
            self.n_samples = start_vars['n_samples']
        else:
            self.n_samples = len([val for val in self.vals if val != "x"])

        #ZS: Check if genotypes exist in the DB in order to create links for markers

        self.geno_db_exists = geno_db_exists(self.dataset)

        self.mapping_method = start_vars['method']
        if "results_path" in start_vars:
            self.mapping_results_path = start_vars['results_path']
        else:
            mapping_results_filename = self.dataset.group.name + "_" + ''.join(
                random.choice(string.ascii_uppercase + string.digits)
                for _ in range(6))
            self.mapping_results_path = "{}{}.csv".format(
                webqtlConfig.GENERATED_IMAGE_DIR, mapping_results_filename)

        self.manhattan_plot = False
        if 'manhattan_plot' in start_vars:
            if start_vars['manhattan_plot'].lower() != "false":
                self.color_scheme = "alternating"
                if "color_scheme" in start_vars:
                    self.color_scheme = start_vars['color_scheme']
                    if self.color_scheme == "single":
                        self.manhattan_single_color = start_vars[
                            'manhattan_single_color']
                self.manhattan_plot = True

        self.maf = start_vars['maf']  # Minor allele frequency
        if "use_loco" in start_vars:
            self.use_loco = start_vars['use_loco']
        else:
            self.use_loco = None
        self.suggestive = ""
        self.significant = ""
        self.pair_scan = False  # Initializing this since it is checked in views to determine which template to use
        if 'transform' in start_vars:
            self.transform = start_vars['transform']
        else:
            self.transform = ""
        self.score_type = "LRS"  #ZS: LRS or LOD
        self.mapping_scale = "physic"
        if "mapping_scale" in start_vars:
            self.mapping_scale = start_vars['mapping_scale']
        self.num_perm = 0
        self.perm_output = []
        self.bootstrap_results = []
        self.covariates = start_vars[
            'covariates'] if "covariates" in start_vars else ""
        self.categorical_vars = []

        #ZS: This is passed to GN1 code for single chr mapping
        self.selected_chr = -1
        if "selected_chr" in start_vars:
            if int(
                    start_vars['selected_chr']
            ) != -1:  #ZS: Needs to be -1 if showing full map; there's probably a better way to fix this
                self.selected_chr = int(start_vars['selected_chr']) + 1
            else:
                self.selected_chr = int(start_vars['selected_chr'])
        if "startMb" in start_vars:
            self.startMb = start_vars['startMb']
        if "endMb" in start_vars:
            self.endMb = start_vars['endMb']
        if "graphWidth" in start_vars:
            self.graphWidth = start_vars['graphWidth']
        if "lrsMax" in start_vars:
            self.lrsMax = start_vars['lrsMax']
        if "haplotypeAnalystCheck" in start_vars:
            self.haplotypeAnalystCheck = start_vars['haplotypeAnalystCheck']
        if "startMb" in start_vars:  #ZS: This is to ensure showGenes, Legend, etc are checked the first time you open the mapping page, since startMb will only not be set during the first load
            if "permCheck" in start_vars:
                self.permCheck = "ON"
            else:
                self.permCheck = False
            self.num_perm = int(start_vars['num_perm'])

            self.LRSCheck = start_vars['LRSCheck']

            if "showSNP" in start_vars:
                self.showSNP = start_vars['showSNP']
            else:
                self.showSNP = False

            if "showGenes" in start_vars:
                self.showGenes = start_vars['showGenes']
            else:
                self.showGenes = False

            if "viewLegend" in start_vars:
                self.viewLegend = start_vars['viewLegend']
            else:
                self.viewLegend = False
        else:
            try:
                if int(start_vars['num_perm']) > 0:
                    self.num_perm = int(start_vars['num_perm'])
            except:
                self.num_perm = 0

            if self.num_perm > 0:
                self.permCheck = "ON"
            else:
                self.permCheck = False
            self.showSNP = "ON"
            self.showGenes = "ON"
            self.viewLegend = "ON"

        #self.dataset.group.get_markers()
        if self.mapping_method == "gemma":
            self.first_run = True
            self.output_files = None
            if 'output_files' in start_vars:
                self.output_files = start_vars['output_files']
            if 'first_run' in start_vars:  #ZS: check if first run so existing result files can be used if it isn't (for example zooming on a chromosome, etc)
                self.first_run = False
            self.score_type = "-logP"
            self.manhattan_plot = True
            with Bench("Running GEMMA"):
                if self.use_loco == "True":
                    marker_obs, self.output_files = gemma_mapping.run_gemma(
                        self.this_trait, self.dataset, self.samples, self.vals,
                        self.covariates, self.use_loco, self.maf,
                        self.first_run, self.output_files)
                else:
                    marker_obs, self.output_files = gemma_mapping.run_gemma(
                        self.this_trait, self.dataset, self.samples, self.vals,
                        self.covariates, self.use_loco, self.maf,
                        self.first_run, self.output_files)
            results = marker_obs
        elif self.mapping_method == "rqtl_plink":
            results = self.run_rqtl_plink()
        elif self.mapping_method == "rqtl_geno":
            perm_strata = []
            if "perm_strata" in start_vars and "categorical_vars" in start_vars:
                self.categorical_vars = start_vars["categorical_vars"].split(
                    ",")
                if len(self.categorical_vars
                       ) and start_vars["perm_strata"] == "True":
                    primary_samples = SampleList(dataset=self.dataset,
                                                 sample_names=self.samples,
                                                 this_trait=self.this_trait)

                    perm_strata = get_perm_strata(self.this_trait,
                                                  primary_samples,
                                                  self.categorical_vars,
                                                  self.samples)
            self.score_type = "LOD"
            self.control_marker = start_vars['control_marker']
            self.do_control = start_vars['do_control']
            if 'mapmethod_rqtl_geno' in start_vars:
                self.method = start_vars['mapmethod_rqtl_geno']
            else:
                self.method = "em"
            self.model = start_vars['mapmodel_rqtl_geno']
            #if start_vars['pair_scan'] == "true":
            #    self.pair_scan = True
            if self.permCheck and self.num_perm > 0:
                self.perm_output, self.suggestive, self.significant, results = rqtl_mapping.run_rqtl_geno(
                    self.vals, self.samples, self.dataset, self.mapping_scale,
                    self.method, self.model, self.permCheck, self.num_perm,
                    perm_strata, self.do_control, self.control_marker,
                    self.manhattan_plot, self.pair_scan, self.covariates)
            else:
                results = rqtl_mapping.run_rqtl_geno(
                    self.vals, self.samples, self.dataset, self.mapping_scale,
                    self.method, self.model, self.permCheck, self.num_perm,
                    perm_strata, self.do_control, self.control_marker,
                    self.manhattan_plot, self.pair_scan, self.covariates)
        elif self.mapping_method == "reaper":
            if "startMb" in start_vars:  #ZS: Check if first time page loaded, so it can default to ON
                if "additiveCheck" in start_vars:
                    self.additiveCheck = start_vars['additiveCheck']
                else:
                    self.additiveCheck = False

                if "bootCheck" in start_vars:
                    self.bootCheck = "ON"
                else:
                    self.bootCheck = False
                self.num_bootstrap = int(start_vars['num_bootstrap'])
            else:
                self.additiveCheck = "ON"
                try:
                    if int(start_vars['num_bootstrap']) > 0:
                        self.bootCheck = "ON"
                        self.num_bootstrap = int(start_vars['num_bootstrap'])
                    else:
                        self.bootCheck = False
                        self.num_bootstrap = 0
                except:
                    self.bootCheck = False
                    self.num_bootstrap = 0

            self.reaper_version = start_vars['reaper_version']

            self.control_marker = start_vars['control_marker']
            self.do_control = start_vars['do_control']
            logger.info("Running qtlreaper")

            if self.reaper_version == "new":
                self.first_run = True
                self.output_files = None
                if 'first_run' in start_vars:  #ZS: check if first run so existing result files can be used if it isn't (for example zooming on a chromosome, etc)
                    self.first_run = False
                    if 'output_files' in start_vars:
                        self.output_files = start_vars['output_files'].split(
                            ",")

                results, self.perm_output, self.suggestive, self.significant, self.bootstrap_results, self.output_files = qtlreaper_mapping.run_reaper(
                    self.this_trait, self.dataset, self.samples, self.vals,
                    self.json_data, self.num_perm, self.bootCheck,
                    self.num_bootstrap, self.do_control, self.control_marker,
                    self.manhattan_plot, self.first_run, self.output_files)
            else:
                results, self.json_data, self.perm_output, self.suggestive, self.significant, self.bootstrap_results = qtlreaper_mapping.run_original_reaper(
                    self.this_trait, self.dataset, self.samples, self.vals,
                    self.json_data, self.num_perm, self.bootCheck,
                    self.num_bootstrap, self.do_control, self.control_marker,
                    self.manhattan_plot)
        elif self.mapping_method == "plink":
            self.score_type = "-logP"
            self.manhattan_plot = True
            results = plink_mapping.run_plink(self.this_trait, self.dataset,
                                              self.species, self.vals,
                                              self.maf)
            #results = self.run_plink()
        else:
            logger.debug("RUNNING NOTHING")

        self.no_results = False
        if len(results) == 0:
            self.no_results = True
        else:
            if self.pair_scan == True:
                self.qtl_results = []
                highest_chr = 1  #This is needed in order to convert the highest chr to X/Y
                for marker in results:
                    if marker['chr1'] > 0 or marker['chr1'] == "X" or marker[
                            'chr1'] == "X/Y":
                        if marker['chr1'] > highest_chr or marker[
                                'chr1'] == "X" or marker['chr1'] == "X/Y":
                            highest_chr = marker['chr1']
                        if 'lod_score' in list(marker.keys()):
                            self.qtl_results.append(marker)

                self.trimmed_markers = results

                for qtl in enumerate(self.qtl_results):
                    self.json_data['chr1'].append(str(qtl['chr1']))
                    self.json_data['chr2'].append(str(qtl['chr2']))
                    self.json_data['Mb'].append(qtl['Mb'])
                    self.json_data['markernames'].append(qtl['name'])

                self.js_data = dict(json_data=self.json_data,
                                    this_trait=self.this_trait.name,
                                    data_set=self.dataset.name,
                                    maf=self.maf,
                                    manhattan_plot=self.manhattan_plot,
                                    mapping_scale=self.mapping_scale,
                                    qtl_results=self.qtl_results)

            else:
                self.qtl_results = []
                self.results_for_browser = []
                self.annotations_for_browser = []
                highest_chr = 1  #This is needed in order to convert the highest chr to X/Y
                for marker in results:
                    if 'Mb' in marker:
                        this_ps = marker['Mb'] * 1000000
                    else:
                        this_ps = marker['cM'] * 1000000

                    browser_marker = dict(chr=str(marker['chr']),
                                          rs=marker['name'],
                                          ps=this_ps,
                                          url="/show_trait?trait_id=" +
                                          marker['name'] + "&dataset=" +
                                          self.dataset.group.name + "Geno")

                    if self.geno_db_exists == "True":
                        annot_marker = dict(name=str(marker['name']),
                                            chr=str(marker['chr']),
                                            rs=marker['name'],
                                            pos=this_ps,
                                            url="/show_trait?trait_id=" +
                                            marker['name'] + "&dataset=" +
                                            self.dataset.group.name + "Geno")
                    else:
                        annot_marker = dict(name=str(marker['name']),
                                            chr=str(marker['chr']),
                                            rs=marker['name'],
                                            pos=this_ps)

                    if 'lrs_value' in marker and marker['lrs_value'] > 0:
                        browser_marker['p_wald'] = 10**-(marker['lrs_value'] /
                                                         4.61)
                    elif 'lod_score' in marker and marker['lod_score'] > 0:
                        browser_marker['p_wald'] = 10**-(marker['lod_score'])
                    else:
                        browser_marker['p_wald'] = 0

                    self.results_for_browser.append(browser_marker)
                    self.annotations_for_browser.append(annot_marker)
                    if str(marker['chr']) > '0' or str(
                            marker['chr']) == "X" or str(
                                marker['chr']) == "X/Y":
                        if str(marker['chr']) > str(highest_chr) or str(
                                marker['chr']) == "X" or str(
                                    marker['chr']) == "X/Y":
                            highest_chr = marker['chr']
                        if ('lod_score'
                                in marker.keys()) or ('lrs_value'
                                                      in marker.keys()):
                            if 'Mb' in marker.keys():
                                marker['display_pos'] = "Chr" + str(
                                    marker['chr']) + ": " + "{:.6f}".format(
                                        marker['Mb'])
                            elif 'cM' in marker.keys():
                                marker['display_pos'] = "Chr" + str(
                                    marker['chr']) + ": " + "{:.3f}".format(
                                        marker['cM'])
                            else:
                                marker['display_pos'] = "N/A"
                            self.qtl_results.append(marker)

                total_markers = len(self.qtl_results)

                with Bench("Exporting Results"):
                    export_mapping_results(self.dataset, self.this_trait,
                                           self.qtl_results,
                                           self.mapping_results_path,
                                           self.mapping_scale, self.score_type)

                with Bench("Trimming Markers for Figure"):
                    if len(self.qtl_results) > 30000:
                        self.qtl_results = trim_markers_for_figure(
                            self.qtl_results)
                        self.results_for_browser = trim_markers_for_figure(
                            self.results_for_browser)
                        filtered_annotations = []
                        for marker in self.results_for_browser:
                            for annot_marker in self.annotations_for_browser:
                                if annot_marker['rs'] == marker['rs']:
                                    filtered_annotations.append(annot_marker)
                                    break
                        self.annotations_for_browser = filtered_annotations
                        browser_files = write_input_for_browser(
                            self.dataset, self.results_for_browser,
                            self.annotations_for_browser)
                    else:
                        browser_files = write_input_for_browser(
                            self.dataset, self.results_for_browser,
                            self.annotations_for_browser)

                with Bench("Trimming Markers for Table"):
                    self.trimmed_markers = trim_markers_for_table(results)

                chr_lengths = get_chr_lengths(self.mapping_scale,
                                              self.mapping_method,
                                              self.dataset, self.qtl_results)

                #ZS: For zooming into genome browser, need to pass chromosome name instead of number
                if self.dataset.group.species == "mouse":
                    if self.selected_chr == 20:
                        this_chr = "X"
                    else:
                        this_chr = str(self.selected_chr)
                elif self.dataset.group.species == "rat":
                    if self.selected_chr == 21:
                        this_chr = "X"
                    else:
                        this_chr = str(self.selected_chr)
                else:
                    if self.selected_chr == 22:
                        this_chr = "X"
                    elif self.selected_chr == 23:
                        this_chr = "Y"
                    else:
                        this_chr = str(self.selected_chr)

                if self.mapping_method != "gemma":
                    if self.score_type == "LRS":
                        significant_for_browser = self.significant / 4.61
                    else:
                        significant_for_browser = self.significant

                    self.js_data = dict(
                        #result_score_type = self.score_type,
                        #this_trait = self.this_trait.name,
                        #data_set = self.dataset.name,
                        #maf = self.maf,
                        #manhattan_plot = self.manhattan_plot,
                        #mapping_scale = self.mapping_scale,
                        #chromosomes = chromosome_mb_lengths,
                        #qtl_results = self.qtl_results,
                        categorical_vars=self.categorical_vars,
                        chr_lengths=chr_lengths,
                        num_perm=self.num_perm,
                        perm_results=self.perm_output,
                        significant=significant_for_browser,
                        browser_files=browser_files,
                        selected_chr=this_chr,
                        total_markers=total_markers)
                else:
                    self.js_data = dict(chr_lengths=chr_lengths,
                                        browser_files=browser_files,
                                        selected_chr=this_chr,
                                        total_markers=total_markers)
Example #47
0
def get_temp_data():
    logger.info(request.url)
    temp_uuid = request.args['key']
    return flask.jsonify(temp_data.TempData(temp_uuid).get_all())
Example #48
0
def search_page():
    logger.info("in search_page")
    if 'info_database' in request.args:
        logger.info("Going to sharing_info_page")
        template_vars = sharing_info_page()
        if template_vars.redirect_url:
            logger.info("Going to redirect")
            return flask.redirect(template_vars.redirect_url)
        else:
            return render_template("data_sharing.html",
                                   **template_vars.__dict__)
    else:
        result = None
        if USE_REDIS:
            with Bench("Trying Redis cache"):
                key = "search_results:v1:" + json.dumps(request.args,
                                                        sort_keys=True)
                logger.debug("key is:", pf(key))
                result = Redis.get(key)
                if result:
                    logger.info("Redis cache hit on search results!")
                    result = pickle.loads(result)
        else:
            logger.info("Skipping Redis cache (USE_REDIS=False)")

        logger.info("request.args is", request.args)
        the_search = search_results.SearchResultPage(request.args)
        result = the_search.__dict__

        logger.debugf("result", result)

        if USE_REDIS:
            Redis.set(key, pickle.dumps(result, pickle.HIGHEST_PROTOCOL))
            Redis.expire(key, 60 * 60)

        if result['search_term_exists']:
            return render_template("search_result_page.html", **result)
        else:
            return render_template("search_error.html")
Example #49
0
def generated_file(filename):
    logger.info(request.url)
    return send_from_directory(GENERATED_IMAGE_DIR, filename)
Example #50
0
def wcgna_setup():
    logger.info("In wgcna, request.form is:", request.form
                )  # We are going to get additional user input for the analysis
    return render_template("wgcna_setup.html",
                           **request.form)  # Display them using the template
Example #51
0
def ctl_setup():
    # We are going to get additional user input for the analysis
    logger.info("In ctl, request.form is:", request.form)
    logger.info(request.url)
    # Display them using the template
    return render_template("ctl_setup.html", **request.form)
Example #52
0
def heatmap_page():
    logger.info("In heatmap, request.form is:", pf(request.form))

    start_vars = request.form
    temp_uuid = uuid.uuid4()

    traits = [trait.strip() for trait in start_vars['trait_list'].split(',')]
    if traits[0] != "":
        version = "v5"
        key = "heatmap:{}:".format(version) + json.dumps(start_vars,
                                                         sort_keys=True)
        logger.info("key is:", pf(key))
        with Bench("Loading cache"):
            result = Redis.get(key)

        if result:
            logger.info("Cache hit!!!")
            with Bench("Loading results"):
                result = pickle.loads(result)

        else:
            logger.info("Cache miss!!!")

            template_vars = heatmap.Heatmap(request.form, temp_uuid)
            template_vars.js_data = json.dumps(template_vars.js_data,
                                               default=json_default_handler,
                                               indent="   ")

            result = template_vars.__dict__

            for item in template_vars.__dict__.keys():
                logger.info("  ---**--- {}: {}".format(
                    type(template_vars.__dict__[item]), item))

            pickled_result = pickle.dumps(result, pickle.HIGHEST_PROTOCOL)
            logger.info("pickled result length:", len(pickled_result))
            Redis.set(key, pickled_result)
            Redis.expire(key, 60 * 60)

        with Bench("Rendering template"):
            rendered_template = render_template("heatmap.html", **result)

    else:
        rendered_template = render_template("empty_collection.html",
                                            **{'tool': 'Heatmap'})

    return rendered_template
Example #53
0
def ephewas():
    logger.info("In ephewas, request.form is:", request.form)             # We are going to get additional user input for the analysis
    ephewasO = ephewas_analysis.EPheWAS()                                            # Start R, load the package and pointers and create the analysis
    return render_template("ephewas_analysis.html", **request.form)          # Display them using the template
Example #54
0
def marker_regression_page():
    initial_start_vars = request.form
    logger.debug("Marker regression called with initial_start_vars:",
                 initial_start_vars.items())
    temp_uuid = initial_start_vars['temp_uuid']
    wanted = ('trait_id', 'dataset', 'method', 'trimmed_markers',
              'selected_chr', 'chromosomes', 'mapping_scale', 'score_type',
              'suggestive', 'significant', 'num_perm', 'permCheck',
              'perm_output', 'num_bootstrap', 'bootCheck', 'bootstrap_results',
              'LRSCheck', 'maf', 'manhattan_plot', 'control_marker',
              'control_marker_db', 'do_control', 'genofile', 'pair_scan',
              'startMb', 'endMb', 'graphWidth', 'lrsMax', 'additiveCheck',
              'showSNP', 'showGenes', 'viewLegend', 'haplotypeAnalystCheck',
              'mapmethod_rqtl_geno', 'mapmodel_rqtl_geno')
    start_vars = {}
    for key, value in initial_start_vars.iteritems():
        if key in wanted or key.startswith(('value:')):
            start_vars[key] = value
    logger.debug("Marker regression called with start_vars:", start_vars)

    version = "v3"
    key = "marker_regression:{}:".format(version) + json.dumps(start_vars,
                                                               sort_keys=True)
    logger.info("key is:", pf(key))
    with Bench("Loading cache"):
        result = None  # Just for testing
        #result = Redis.get(key)

    #logger.info("************************ Starting result *****************")
    #logger.info("result is [{}]: {}".format(type(result), result))
    #logger.info("************************ Ending result ********************")

    if result:
        logger.info("Cache hit!!!")
        with Bench("Loading results"):
            result = pickle.loads(result)
    else:
        logger.info("Cache miss!!!")
        with Bench("Total time in MarkerRegression"):
            template_vars = marker_regression.MarkerRegression(
                start_vars, temp_uuid)

        if template_vars.mapping_method != "gemma" and template_vars.mapping_method != "plink":
            template_vars.js_data = json.dumps(template_vars.js_data,
                                               default=json_default_handler,
                                               indent="   ")

        result = template_vars.__dict__

        if result['pair_scan']:
            with Bench("Rendering template"):
                img_path = result['pair_scan_filename']
                logger.info("img_path:", img_path)
                initial_start_vars = request.form
                logger.info("initial_start_vars:", initial_start_vars)
                imgfile = open(TEMPDIR + img_path, 'rb')
                imgdata = imgfile.read()
                imgB64 = imgdata.encode("base64")
                bytesarray = array.array('B', imgB64)
                result['pair_scan_array'] = bytesarray
                rendered_template = render_template("pair_scan_results.html",
                                                    **result)
        else:
            #for item in template_vars.__dict__.keys():
            #    logger.info("  ---**--- {}: {}".format(type(template_vars.__dict__[item]), item))

            gn1_template_vars = marker_regression_gn1.MarkerRegression(
                result).__dict__
            #pickled_result = pickle.dumps(result, pickle.HIGHEST_PROTOCOL)
            #logger.info("pickled result length:", len(pickled_result))
            #Redis.set(key, pickled_result)
            #Redis.expire(key, 1*60)

            with Bench("Rendering template"):
                if (gn1_template_vars['mapping_method']
                        == "gemma") or (gn1_template_vars['mapping_method']
                                        == "plink"):
                    gn1_template_vars.pop('qtlresults', None)
                print("TEMPLATE KEYS:", list(gn1_template_vars.keys()))
                rendered_template = render_template(
                    "marker_regression_gn1.html", **gn1_template_vars)

    # with Bench("Rendering template"):
    # if result['pair_scan'] == True:
    # img_path = result['pair_scan_filename']
    # logger.info("img_path:", img_path)
    # initial_start_vars = request.form
    # logger.info("initial_start_vars:", initial_start_vars)
    # imgfile = open(TEMPDIR + '/' + img_path, 'rb')
    # imgdata = imgfile.read()
    # imgB64 = imgdata.encode("base64")
    # bytesarray = array.array('B', imgB64)
    # result['pair_scan_array'] = bytesarray
    # rendered_template = render_template("pair_scan_results.html", **result)
    # else:
    # rendered_template = render_template("marker_regression.html", **result)
    # rendered_template = render_template("marker_regression_gn1.html", **gn1_template_vars)

    return rendered_template
Example #55
0
def push_data_to_es(img_uuid, img_list):
    logger.info("Adding data to index..")
    def run_analysis(self, requestform):
        logger.info("Starting CTL analysis on dataset")
        self.trait_db_list = [
            trait.strip() for trait in requestform['trait_list'].split(',')
        ]
        self.trait_db_list = [x for x in self.trait_db_list if x]

        logger.debug("strategy:", requestform.get("strategy"))
        strategy = requestform.get("strategy")

        logger.debug("nperm:", requestform.get("nperm"))
        nperm = int(requestform.get("nperm"))

        logger.debug("parametric:", requestform.get("parametric"))
        parametric = bool(requestform.get("parametric"))

        logger.debug("significance:", requestform.get("significance"))
        significance = float(requestform.get("significance"))

        # Get the name of the .geno file belonging to the first phenotype
        datasetname = self.trait_db_list[0].split(":")[1]
        dataset = data_set.create_dataset(datasetname)

        genofilelocation = locate(dataset.group.name + ".geno", "genotype")
        parser = genofile_parser.ConvertGenoFile(genofilelocation)
        parser.process_csv()
        logger.debug("dataset group: ", dataset.group)
        # Create a genotype matrix
        individuals = parser.individuals
        markers = []
        markernames = []
        for marker in parser.markers:
            markernames.append(marker["name"])
            markers.append(marker["genotypes"])

        genotypes = list(itertools.chain(*markers))
        logger.debug(
            len(genotypes) / len(individuals), "==", len(parser.markers))

        rGeno = r_t(
            ro.r.matrix(r_unlist(genotypes),
                        nrow=len(markernames),
                        ncol=len(individuals),
                        dimnames=r_list(markernames, individuals),
                        byrow=True))

        # Create a phenotype matrix
        traits = []
        for trait in self.trait_db_list:
            logger.debug("retrieving data for", trait)
            if trait != "":
                ts = trait.split(':')
                gt = create_trait(name=ts[0], dataset_name=ts[1])
                gt = retrieve_sample_data(gt, dataset, individuals)
                for ind in individuals:
                    if ind in list(gt.data.keys()):
                        traits.append(gt.data[ind].value)
                    else:
                        traits.append("-999")

        rPheno = r_t(
            ro.r.matrix(r_as_numeric(r_unlist(traits)),
                        nrow=len(self.trait_db_list),
                        ncol=len(individuals),
                        dimnames=r_list(self.trait_db_list, individuals),
                        byrow=True))

        logger.debug(rPheno)

        # Use a data frame to store the objects
        rPheno = r_data_frame(rPheno, check_names=False)
        rGeno = r_data_frame(rGeno, check_names=False)

        # Debug: Print the genotype and phenotype files to disk
        #r_write_table(rGeno, "~/outputGN/geno.csv")
        #r_write_table(rPheno, "~/outputGN/pheno.csv")

        # Perform the CTL scan
        res = self.r_CTLscan(rGeno,
                             rPheno,
                             strategy=strategy,
                             nperm=nperm,
                             parametric=parametric,
                             nthreads=6)

        # Get significant interactions
        significant = self.r_CTLsignificant(res, significance=significance)

        # Create an image for output
        self.results = {}
        self.results['imgurl1'] = webqtlUtil.genRandStr("CTLline_") + ".png"
        self.results['imgloc1'] = GENERATED_IMAGE_DIR + self.results['imgurl1']

        self.results['ctlresult'] = significant
        # Store the user specified parameters for the output page
        self.results['requestform'] = requestform

        # Create the lineplot
        r_png(self.results['imgloc1'],
              width=1000,
              height=600,
              type='cairo-png')
        self.r_lineplot(res, significance=significance)
        r_dev_off()

        # We start from 2, since R starts from 1 :)
        n = 2
        for trait in self.trait_db_list:
            # Create the QTL like CTL plots
            self.results['imgurl' + \
                         str(n)] = webqtlUtil.genRandStr("CTL_") + ".png"
            self.results['imgloc' + str(n)] = GENERATED_IMAGE_DIR + \
                self.results['imgurl' + str(n)]
            r_png(self.results['imgloc' + str(n)],
                  width=1000,
                  height=600,
                  type='cairo-png')
            self.r_plotCTLobject(res, (n - 1),
                                 significance=significance,
                                 main='Phenotype ' + trait)
            r_dev_off()
            n = n + 1

        # Flush any output from R
        sys.stdout.flush()

        # Create the interactive graph for cytoscape visualization (Nodes and Edges)
        if not isinstance(significant, ri.RNULLType):
            for x in range(len(significant[0])):
                logger.debug(significant[0][x], significant[1][x],
                             significant[2][x])  # Debug to console
                # Source
                tsS = significant[0][x].split(':')
                # Target
                tsT = significant[2][x].split(':')
                # Retrieve Source info from the DB
                gtS = create_trait(name=tsS[0], dataset_name=tsS[1])
                # Retrieve Target info from the DB
                gtT = create_trait(name=tsT[0], dataset_name=tsT[1])
                self.addNode(gtS)
                self.addNode(gtT)
                self.addEdge(gtS, gtT, significant, x)

                # Update the trait name for the displayed table
                significant[0][x] = "{} ({})".format(gtS.symbol, gtS.name)
                # Update the trait name for the displayed table
                significant[2][x] = "{} ({})".format(gtT.symbol, gtT.name)

        self.elements = json.dumps(self.nodes_list + self.edges_list)
Example #57
0
def corr_compute_page():
    logger.info("In corr_compute, request.form is:", pf(request.form))
    #fd = webqtlFormData.webqtlFormData(request.form)
    template_vars = show_corr_results.CorrelationResults(request.form)
    return render_template("correlation_page.html", **template_vars.__dict__)
Example #58
0
def run_rqtl_geno(vals, samples, dataset, method, model, permCheck, num_perm, perm_strata_list, do_control, control_marker, manhattan_plot, pair_scan, cofactors):
    ## Get pointers to some common R functions
    r_library     = ro.r["library"]                 # Map the library function
    r_c           = ro.r["c"]                       # Map the c function
    plot          = ro.r["plot"]                    # Map the plot function
    png           = ro.r["png"]                     # Map the png function
    dev_off       = ro.r["dev.off"]                 # Map the device off function

    print(r_library("qtl"))                         # Load R/qtl

    ## Get pointers to some R/qtl functions
    scanone                    = ro.r["scanone"]               # Map the scanone function
    scantwo                    = ro.r["scantwo"]               # Map the scantwo function
    calc_genoprob              = ro.r["calc.genoprob"]         # Map the calc.genoprob function

    crossname = dataset.group.name
    #try:
    #    generate_cross_from_rdata(dataset)
    #    read_cross_from_rdata      = ro.r["generate_cross_from_rdata"] # Map the local read_cross_from_rdata function
    #    genofilelocation  = locate(crossname + ".RData", "genotype/rdata")
    #    cross_object = read_cross_from_rdata(genofilelocation)  # Map the local GENOtoCSVR function
    #except:
    generate_cross_from_geno(dataset)
    GENOtoCSVR                 = ro.r["GENOtoCSVR"]            # Map the local GENOtoCSVR function
    crossfilelocation = TMPDIR + crossname + ".cross"
    if dataset.group.genofile:
        genofilelocation  = locate(dataset.group.genofile, "genotype")
    else:
        genofilelocation = locate(dataset.group.name + ".geno", "genotype")
    cross_object = GENOtoCSVR(genofilelocation, crossfilelocation)      # TODO: Add the SEX if that is available

    if manhattan_plot:
        cross_object = calc_genoprob(cross_object)
    else:
        cross_object = calc_genoprob(cross_object, step=1, stepwidth="max")

    pheno_string = sanitize_rqtl_phenotype(vals)

    cross_object = add_phenotype(cross_object, pheno_string, "the_pheno")                 # Add the phenotype

    # Scan for QTLs
    marker_covars = create_marker_covariates(control_marker, cross_object)  # Create the additive covariate markers

    if cofactors != "":
        cross_object, trait_covars = add_cofactors(cross_object, dataset, cofactors, samples)                            # Create the covariates from selected traits
        ro.r('all_covars <- cbind(marker_covars, trait_covars)')
    else:
        ro.r('all_covars <- marker_covars')

    covars = ro.r['all_covars']

    if pair_scan:
        if do_control == "true":
            logger.info("Using covariate"); result_data_frame = scantwo(cross_object, pheno = "the_pheno", addcovar = covars, model=model, method=method, n_cluster = 16)
        else:
            logger.info("No covariates"); result_data_frame = scantwo(cross_object, pheno = "the_pheno", model=model, method=method, n_cluster = 16)

        pair_scan_filename = webqtlUtil.genRandStr("scantwo_") + ".png"
        png(file=TEMPDIR+pair_scan_filename)
        plot(result_data_frame)
        dev_off()

        return process_pair_scan_results(result_data_frame)
    else:
        if do_control == "true" or cofactors != "":
            logger.info("Using covariate"); result_data_frame = scanone(cross_object, pheno = "the_pheno", addcovar = covars, model=model, method=method)
        else:
            logger.info("No covariates"); result_data_frame = scanone(cross_object, pheno = "the_pheno", model=model, method=method)

        if num_perm > 0 and permCheck == "ON":                                                                   # Do permutation (if requested by user)
            if len(perm_strata_list) > 0: #ZS: The strata list would only be populated if "Stratified" was checked on before mapping
                cross_object, strata_ob = add_perm_strata(cross_object, perm_strata_list)
                if do_control == "true" or cofactors != "":
                    perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", addcovar = covars, n_perm = int(num_perm), perm_strata = strata_ob, model=model, method=method)
                else:
                    perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", n_perm = num_perm, perm_strata = strata_ob, model=model, method=method)
            else:
                if do_control == "true" or cofactors != "":
                    perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", addcovar = covars, n_perm = int(num_perm), model=model, method=method)
                else:
                    perm_data_frame = scanone(cross_object, pheno_col = "the_pheno", n_perm = num_perm, model=model, method=method)

            perm_output, suggestive, significant = process_rqtl_perm_results(num_perm, perm_data_frame)          # Functions that sets the thresholds for the webinterface
            the_scale = check_mapping_scale(genofilelocation)
            return perm_output, suggestive, significant, process_rqtl_results(result_data_frame, dataset.group.species), the_scale
        else:
            the_scale = check_mapping_scale(genofilelocation)
            return process_rqtl_results(result_data_frame, dataset.group.species), the_scale
Example #59
0
    def __init__(self, start_vars, temp_uuid):

        helper_functions.get_species_dataset_trait(self, start_vars)

        self.temp_uuid = temp_uuid #needed to pass temp_uuid to gn1 mapping code (marker_regression_gn1.py)

        self.json_data = {}
        self.json_data['lodnames'] = ['lod.hk']

        self.samples = [] # Want only ones with values
        self.vals = []

        all_samples_ordered = self.dataset.group.all_samples_ordered()
        primary_sample_names = list(all_samples_ordered)

        for sample in self.dataset.group.samplelist:
            # sample is actually the name of an individual
            in_trait_data = False
            for item in self.this_trait.data:
                if self.this_trait.data[item].name == sample:
                    value = start_vars['value:' + self.this_trait.data[item].name]
                    self.samples.append(self.this_trait.data[item].name)
                    self.vals.append(value)
                    in_trait_data = True
                    break
            if not in_trait_data:
                value = start_vars.get('value:' + sample)
                if value:
                    self.samples.append(sample)
                    self.vals.append(value)

        self.mapping_method = start_vars['method']
        if start_vars['manhattan_plot'] == "True":
            self.manhattan_plot = True
        else:
            self.manhattan_plot = False

        self.maf = start_vars['maf'] # Minor allele frequency
        self.suggestive = ""
        self.significant = ""
        self.pair_scan = False # Initializing this since it is checked in views to determine which template to use
        self.score_type = "LRS" #ZS: LRS or LOD
        self.mapping_scale = "physic"
        self.num_perm = 0
        self.perm_output = []
        self.bootstrap_results = []

        #ZS: This is passed to GN1 code for single chr mapping
        self.selected_chr = -1
        if "selected_chr" in start_vars:
            if int(start_vars['selected_chr']) != -1: #ZS: Needs to be -1 if showing full map; there's probably a better way to fix this
                self.selected_chr = int(start_vars['selected_chr']) + 1
            else:
                self.selected_chr = int(start_vars['selected_chr'])
        if "startMb" in start_vars:
            self.startMb = start_vars['startMb']
        if "endMb" in start_vars:
            self.endMb = start_vars['endMb']
        if "graphWidth" in start_vars:
            self.graphWidth = start_vars['graphWidth']
        if "lrsMax" in start_vars:
            self.lrsMax = start_vars['lrsMax']
        if "haplotypeAnalystCheck" in start_vars:
            self.haplotypeAnalystCheck = start_vars['haplotypeAnalystCheck']
        if "startMb" in start_vars: #ZS: This is to ensure showGenes, Legend, etc are checked the first time you open the mapping page, since startMb will only not be set during the first load
            if "permCheck" in start_vars:
                self.permCheck = "ON"
            else:
                self.permCheck = False
            self.num_perm = int(start_vars['num_perm'])

            self.LRSCheck = start_vars['LRSCheck']

            if "showSNP" in start_vars:
                self.showSNP = start_vars['showSNP']
            else:
                self.showSNP = False

            if "showGenes" in start_vars:
                self.showGenes = start_vars['showGenes']
            else:
                self.showGenes = False

            if "viewLegend" in start_vars:
                self.viewLegend = start_vars['viewLegend']
            else:
                self.viewLegend = False
        else:
            try:
                if int(start_vars['num_perm']) > 0:
                    self.num_perm = int(start_vars['num_perm'])
            except:
                self.num_perm = 0

            if self.num_perm > 0:
                self.permCheck = "ON"
            else:
                self.permCheck = False
            self.showSNP = "ON"
            self.showGenes = "ON"
            self.viewLegend = "ON"

        self.dataset.group.get_markers()
        if self.mapping_method == "gemma":
            self.score_type = "-log(p)"
            self.manhattan_plot = True
            with Bench("Running GEMMA"):
                marker_obs = gemma_mapping.run_gemma(self.dataset, self.samples, self.vals)
            results = marker_obs
        elif self.mapping_method == "rqtl_plink":
            results = self.run_rqtl_plink()
        elif self.mapping_method == "rqtl_geno":
            self.score_type = "LOD"
            self.mapping_scale = "morgan"
            self.control_marker = start_vars['control_marker']
            self.do_control = start_vars['do_control']
            self.dataset.group.genofile = start_vars['genofile']
            self.method = start_vars['mapmethod_rqtl_geno']
            self.model = start_vars['mapmodel_rqtl_geno']
            if start_vars['pair_scan'] == "true":
                self.pair_scan = True
            if self.permCheck and self.num_perm > 0:
                self.perm_output, self.suggestive, self.significant, results = rqtl_mapping.run_rqtl_geno(self.vals, self.dataset, self.method, self.model, self.permCheck, self.num_perm, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan)
            else:
                results = rqtl_mapping.run_rqtl_geno(self.vals, self.dataset, self.method, self.model, self.permCheck, self.num_perm, self.do_control, self.control_marker, self.manhattan_plot, self.pair_scan)
        elif self.mapping_method == "reaper":
            if "startMb" in start_vars: #ZS: Check if first time page loaded, so it can default to ON
                if "additiveCheck" in start_vars:
                    self.additiveCheck = start_vars['additiveCheck']
                else:
                    self.additiveCheck = False

                if "bootCheck" in start_vars:
                    self.bootCheck = "ON"
                else:
                    self.bootCheck = False
                self.num_bootstrap = int(start_vars['num_bootstrap'])
            else:
                self.additiveCheck = "ON"
                try:
                    if int(start_vars['num_bootstrap']) > 0:
                        self.bootCheck = "ON"
                        self.num_bootstrap = int(start_vars['num_bootstrap'])
                    else:
                        self.bootCheck = False
                        self.num_bootstrap = 0
                except:
                    self.bootCheck = False
                    self.num_bootstrap = 0

            self.control_marker = start_vars['control_marker']
            self.do_control = start_vars['do_control']
            self.dataset.group.genofile = start_vars['genofile']
            logger.info("Running qtlreaper")
            results, self.json_data, self.perm_output, self.suggestive, self.significant, self.bootstrap_results = qtlreaper_mapping.gen_reaper_results(self.this_trait,
                                                                                                                                                        self.dataset,
                                                                                                                                                        self.samples,
                                                                                                                                                        self.json_data,
                                                                                                                                                        self.num_perm,
                                                                                                                                                        self.bootCheck,
                                                                                                                                                        self.num_bootstrap,
                                                                                                                                                        self.do_control,
                                                                                                                                                        self.control_marker,
                                                                                                                                                        self.manhattan_plot)
        elif self.mapping_method == "plink":
            self.score_type = "-log(p)"
            self.manhattan_plot = True
            results = plink_mapping.run_plink(self.this_trait, self.dataset, self.species, self.vals, self.maf)
            #results = self.run_plink()
        elif self.mapping_method == "pylmm":
            logger.debug("RUNNING PYLMM")
            self.dataset.group.genofile = start_vars['genofile']
            if self.num_perm > 0:
                self.run_permutations(str(temp_uuid))
            results = self.gen_data(str(temp_uuid))
        else:
            logger.debug("RUNNING NOTHING")

        if self.pair_scan == True:
            self.qtl_results = []
            highest_chr = 1 #This is needed in order to convert the highest chr to X/Y
            for marker in results:
                if marker['chr1'] > 0 or marker['chr1'] == "X" or marker['chr1'] == "X/Y":
                    if marker['chr1'] > highest_chr or marker['chr1'] == "X" or marker['chr1'] == "X/Y":
                        highest_chr = marker['chr1']
                    if 'lod_score' in marker.keys():
                        self.qtl_results.append(marker)

            self.trimmed_markers = results

            for qtl in enumerate(self.qtl_results):
                self.json_data['chr1'].append(str(qtl['chr1']))
                self.json_data['chr2'].append(str(qtl['chr2']))
                self.json_data['Mb'].append(qtl['Mb'])
                self.json_data['markernames'].append(qtl['name'])

            self.js_data = dict(
                json_data = self.json_data,
                this_trait = self.this_trait.name,
                data_set = self.dataset.name,
                maf = self.maf,
                manhattan_plot = self.manhattan_plot,
                mapping_scale = self.mapping_scale,
                qtl_results = self.qtl_results
            )

        else:
            self.cutoff = 2
            self.qtl_results = []
            highest_chr = 1 #This is needed in order to convert the highest chr to X/Y
            for marker in results:
                if marker['chr'] > 0 or marker['chr'] == "X" or marker['chr'] == "X/Y":
                    if marker['chr'] > highest_chr or marker['chr'] == "X" or marker['chr'] == "X/Y":
                        highest_chr = marker['chr']
                    if ('lod_score' in marker.keys()) or ('lrs_value' in marker.keys()):
                        self.qtl_results.append(marker)

            self.trimmed_markers = trim_markers_for_table(results)

            if self.mapping_method != "gemma":
                self.json_data['chr'] = []
                self.json_data['pos'] = []
                self.json_data['lod.hk'] = []
                self.json_data['markernames'] = []

                self.json_data['suggestive'] = self.suggestive
                self.json_data['significant'] = self.significant

                #Need to convert the QTL objects that qtl reaper returns into a json serializable dictionary
                for index, qtl in enumerate(self.qtl_results):
                    #if index<40:
                    #    logger.debug("lod score is:", qtl['lod_score'])
                    if qtl['chr'] == highest_chr and highest_chr != "X" and highest_chr != "X/Y":
                        #logger.debug("changing to X")
                        self.json_data['chr'].append("X")
                    else:
                        self.json_data['chr'].append(str(qtl['chr']))
                    self.json_data['pos'].append(qtl['Mb'])
                    if 'lrs_value' in qtl.keys():
                        self.json_data['lod.hk'].append(str(qtl['lrs_value']))
                    else:
                        self.json_data['lod.hk'].append(str(qtl['lod_score']))
                    self.json_data['markernames'].append(qtl['name'])

                #Get chromosome lengths for drawing the interval map plot
                chromosome_mb_lengths = {}
                self.json_data['chrnames'] = []
                for key in self.species.chromosomes.chromosomes.keys():
                    self.json_data['chrnames'].append([self.species.chromosomes.chromosomes[key].name, self.species.chromosomes.chromosomes[key].mb_length])
                    chromosome_mb_lengths[key] = self.species.chromosomes.chromosomes[key].mb_length

                # logger.debug("json_data:", self.json_data)

                self.js_data = dict(
                    result_score_type = self.score_type,
                    json_data = self.json_data,
                    this_trait = self.this_trait.name,
                    data_set = self.dataset.name,
                    maf = self.maf,
                    manhattan_plot = self.manhattan_plot,
                    mapping_scale = self.mapping_scale,
                    chromosomes = chromosome_mb_lengths,
                    qtl_results = self.qtl_results,
                    num_perm = self.num_perm,
                    perm_results = self.perm_output,
                )
Example #60
0
                   and snap_id <= %s
                   and parsing_schema_name= '%s'
                 group by sql_id) sqt,
               dba_hist_sqltext st
         where st.sql_id(+) = sqt.sql_id
           and st.dbid(+) = %s
         order by nvl(sqt.bget, -1) desc, sqt.sql_id)
 where rownum < 65
   and (rownum <= 10 or logical_read_Per_Total > 1)
            ''' % (beg_snap,end_snap,dbid,dbid,inst_num,inst_num,dbid,inst_num,beg_snap,end_snap,owner,dbid)
    engine = create_engine(DB_CONN_STRING_1,poolclass=NullPool)
    return pd.read_sql_query(sql,engine)


if __name__ == '__main__':
    logger.info('开始')
    #加载有卡数据

    delDirectory()
    
    dbid = getDBInfo('1',-1,-1,-1).values
    inst_num = getDBInfo('2',-1,-1,-1).values
    if not dbid[0][0] or dbid[0][0] == 'null' or not inst_num[0][0] or inst_num[0][0] == 'null' or inst_num[0][0] == 0:
        logger.info('获取的dbid失败:%s' % dbid[0][0])
        logger.info('获取的inst_num失败:%s' % inst_num[0][0])
    else:
        logger.info('成功获取dbid:%s' % dbid[0][0])
        logger.info('成功获取inst_num:%s' % inst_num[0][0])
        end_snap = getDBInfo('3',dbid[0][0],inst_num[0][0],-1).values
        beg_snap = getDBInfo('4',dbid[0][0],inst_num[0][0],end_snap[0][0]).values
        logger.info('成功获取beg_snap:%s' % beg_snap[0][0])