resultRow.append(neg) tp_rate = float(true_alerts) / pos resultRow.append(tp_rate) fp_rate = float(false_alerts) / neg resultRow.append(fp_rate) resultRow.append(sum(found)) return resultRow if __name__ == '__main__': ut.list_to_csv(head=head) result = [] df_list = [] name_list = ut_light.gen_list_title(data_type='bgs') for index, name in enumerate(name_list[0:5]): for threshold in thresholds: ut.checkFolderandCreate("{}\\ROC\\{}".format(main_path, algo_name)) pickle_ROC_file = '{}\\ROC\\{}\\_{}_threshold{}.pkl'.format( main_path, algo_name, name, threshold) if not os.path.exists(pickle_ROC_file): result = [] data = ut_light.load_light_select_dataset(input_path=path, file_name=name) print("##### cal name : {} , threshold = {} #####".format( name, threshold)) ROC_row = genROCFile(name=name, data=data, threshold=threshold) result.append(ROC_row) df = pd.DataFrame(result, columns=ROC_head) with open(pickle_ROC_file, 'wb') as output:
tp_rate = float(true_alerts) / pos resultRow.append(tp_rate) fp_rate = float(false_alerts) / neg resultRow.append(fp_rate) resultRow.append(sum(found)) return resultRow if __name__ == '__main__': ut.list_to_csv(head=head) result = [] df_list = [] # name_list = ut_light.gen_list_mix(main_path=dataset_path,data_type='bgs',mix_size="*sq_L3_I30_*") name_list = ut_light.gen_list_title(data_type='pca') for index, name in enumerate(name_list): listWindow = [] data = ut_light.load_light_select_dataset(input_path=path, file_name=name, is_mix=is_mix) # for index_tran in range(data.get_len_tran()): for index_tran in range(2): coreSketch = dySketch(alpha_mean=alpha_mean, alpha_var=alpha_var, e=e, w_size=WINDOW_SIZE, bin_size=bin_size) instances = data.get_dataset_test(int(index_tran)) for i, instance in enumerate(instances): if i == len(instances) - 1: