Example #1
0
    def _aerial_rpy(ang_vel_start, ang_vel_next, rot, dt):
        """
        :param ang_vel_start: beginning step angular velocity (world coordinates)
        :param ang_vel_next: next step angular velocity (world coordinates)
        :param rot: orientation matrix
        :param dt: time step
        :return: Vec3 with roll pitch yaw controls
        """
        # car's moment of inertia (spherical symmetry)
        J = 10.5

        # aerial control torque coefficients
        T = Vec3(-400.0, -130.0, 95.0)

        # aerial damping torque coefficients
        H = Vec3(-50.0, -30.0, -20.0)

        # get angular velocities in local coordinates
        w0_local = dot(ang_vel_start, rot)
        w1_local = dot(ang_vel_next, rot)

        # PWL equation coefficients
        a = [T[i] * dt / J for i in range(0, 3)]
        b = [-w0_local[i] * H[i] * dt / J for i in range(0, 3)]
        c = [w1_local[i] - (1 + H[i] * dt / J) * w0_local[i] for i in range(0, 3)]

        # RL treats roll damping differently
        b[0] = 0

        return Vec3(
            solve_PWL(a[0], b[0], c[0]),
            solve_PWL(a[1], b[1], c[1]),
            solve_PWL(a[2], b[2], c[2])
        )
Example #2
0
    def align(self, bot, target_rot: Mat33) -> SimpleControllerState:

        car = bot.info.my_car

        local_forward = dot(target_rot.col(0), car.rot)
        local_up = dot(target_rot.col(2), car.rot)
        local_ang_vel = dot(car.ang_vel, car.rot)

        pitch_ang = math.atan2(-local_forward.z, local_forward.x)
        pitch_ang_vel = local_ang_vel.y

        yaw_ang = math.atan2(-local_forward.y, local_forward.x)
        yaw_ang_vel = -local_ang_vel.z

        roll_ang = math.atan2(-local_up.y, local_up.z)
        roll_ang_vel = local_ang_vel.x
        forwards_dot = dot(target_rot.col(0), car.forward)
        roll_scale = forwards_dot**2 if forwards_dot > 0.85 else 0

        self.controls.pitch = clip(-3.3 * pitch_ang + 0.8 * pitch_ang_vel, -1,
                                   1)
        self.controls.yaw = clip(-3.3 * yaw_ang + 0.9 * yaw_ang_vel, -1, 1)
        self.controls.roll = clip(-3 * roll_ang + 0.5 * roll_ang_vel, -1,
                                  1) * roll_scale
        self.controls.throttle = 1

        return self.controls
Example #3
0
    def towards(self, bot, target: Vec3, time: float, allowed_uncertainty: float = 0.3, dodge_hit: bool = True):

        ball_soon = ball_predict(bot, time)
        ball_soon_to_target_dir = normalize(target - ball_soon.pos)
        right = dot(axis_to_rotation(Vec3(z=allowed_uncertainty)), ball_soon_to_target_dir)
        left = dot(axis_to_rotation(Vec3(z=-allowed_uncertainty)), ball_soon_to_target_dir)
        aim_cone = AimCone(right, left)

        aim_cone.draw(ball_soon.pos, r=0, g=0)

        return self.with_aiming(bot, aim_cone, time, dodge_hit)
Example #4
0
    def utility_score(self, bot) -> float:

        car = bot.info.my_car
        ball = bot.info.ball

        my_hit_time = predict.time_till_reach_ball(car, ball)
        ball_soon = predict.ball_predict(bot, min(my_hit_time, 1.0))

        close_to_ball_01 = clip01(1.0 - norm(car.pos - ball_soon.pos) / 3500) ** 0.5  # FIXME Not great

        reachable_ball = predict.ball_predict(bot, predict.time_till_reach_ball(bot.info.my_car, ball))
        xy_ball_to_goal = xy(bot.info.opp_goal.pos - reachable_ball.pos)
        xy_car_to_ball = xy(reachable_ball.pos - bot.info.my_car.pos)
        in_position_01 = ease_out(clip01(dot(xy_ball_to_goal, xy_car_to_ball)), 0.5)

        # Chase ball right after kickoff. High right after kickoff
        kickoff_bias01 = max(0, 1 - bot.info.time_since_last_kickoff * 0.3) * float(bot.info.my_car.objective == Objective.UNKNOWN)

        obj_bonus = {
            Objective.UNKNOWN: 1,
            Objective.GO_FOR_IT: 1,
            Objective.FOLLOW_UP: 0,
            Objective.ROTATING: 0,
            Objective.SOLO: 1,
        }[bot.info.my_car.objective]

        return clip01(close_to_ball_01 * in_position_01 + kickoff_bias01) * obj_bonus
Example #5
0
    def exec(self, bot) -> SimpleControllerState:
        ct = bot.info.time - self._start_time
        controls = SimpleControllerState()
        controls.throttle = 1

        car = bot.info.my_car

        # Target is allowed to be a function that takes bot as a parameter. Check what it is
        if callable(self.target):
            target = self.target(bot)
        else:
            target = self.target

        # To boost or not to boost, that is the question
        car_to_target = target - car.pos
        vel_p = proj_onto_size(car.vel, car_to_target)
        angle = angle_between(car_to_target, car.forward)
        controls.boost = self.boost and angle < self._boost_ang_req and vel_p < self._max_speed

        # States of dodge (note reversed order)
        # Land on ground
        if ct >= self._t_finishing:
            self._almost_finished = True
            if car.on_ground:
                self.done = True
            else:
                bot.maneuver = RecoveryManeuver(bot)
                self.done = True
            return controls
        elif ct >= self._t_second_unjump:
            # Stop pressing jump and rotate and wait for flip is done
            pass
        elif ct >= self._t_aim:
            if ct >= self._t_second_jump:
                controls.jump = 1

            # Direction, yaw, pitch, roll
            if self.target is None:
                controls.roll = 0
                controls.pitch = -1
                controls.yaw = 0
            else:
                target_local = dot(car_to_target, car.rot)
                target_local.z = 0

                direction = normalize(target_local)

                controls.roll = 0
                controls.pitch = -direction.x
                controls.yaw = sign(car.rot.get(2, 2)) * direction.y

        # Stop pressing jump
        elif ct >= self._t_first_unjump:
            pass

        # First jump
        else:
            controls.jump = 1

        return controls
Example #6
0
    def exec(self, bot):

        car = bot.info.my_car

        # For testing
        # f = normalize(bot.info.ball.pos - car.pos)
        # l = cross(f, Vec3(z=1))
        # u = cross(l, f)
        # self.target = Mat33.from_columns(f, l, u)

        bot.renderer.draw_line_3d(car.pos, car.pos + 200 * self.target.col(0), bot.renderer.red())
        bot.renderer.draw_line_3d(car.pos, car.pos + 200 * self.target.col(1), bot.renderer.green())
        bot.renderer.draw_line_3d(car.pos, car.pos + 200 * self.target.col(2), bot.renderer.blue())

        self.done |= car.on_ground

        local_forward = dot(self.target.col(0), car.rot)
        local_up = dot(self.target.col(2), car.rot)
        local_ang_vel = dot(car.ang_vel, car.rot)

        pitch_ang = math.atan2(local_forward.z, local_forward.x)
        pitch_ang_vel = local_ang_vel.y

        yaw_ang = math.atan2(-local_forward.y, local_forward.x)
        yaw_ang_vel = -local_ang_vel.z

        roll_ang = math.atan2(-local_up.y, local_up.z)
        roll_ang_vel = local_ang_vel.x

        P_pitch = 3.8
        D_pitch = 0.8

        P_yaw = -3.8
        D_yaw = 0.9

        P_roll = -3.3
        D_roll = 0.5

        uprightness = dot(car.up, self.target.col(2))
        yaw_scale = 0.0 if uprightness < 0.6 else uprightness ** 2

        return SimpleControllerState(
            pitch=clip(P_pitch * pitch_ang + D_pitch * pitch_ang_vel, -1, 1),
            yaw=clip((P_yaw * yaw_ang + D_yaw * yaw_ang_vel) * yaw_scale, -1, 1),
            roll=clip(P_roll * roll_ang + D_roll * roll_ang_vel, -1, 1),
            throttle=1.0,
        )
Example #7
0
    def exec(self, bot):

        controls = SimpleControllerState()
        dt = bot.info.dt
        car = bot.info.my_car

        relative_rotation = dot(transpose(car.rot), self.target)
        geodesic_local = rotation_to_axis(relative_rotation)

        # figure out the axis of minimal rotation to target
        geodesic_world = dot(car.rot, geodesic_local)

        # get the angular acceleration
        alpha = Vec3(
            self.controller(geodesic_world.x, car.ang_vel.x, dt),
            self.controller(geodesic_world.y, car.ang_vel.y, dt),
            self.controller(geodesic_world.z, car.ang_vel.z, dt)
        )

        # reduce the corrections for when the solution is nearly converged
        alpha.x = self.q(abs(geodesic_world.x) + abs(car.ang_vel.x)) * alpha.x
        alpha.y = self.q(abs(geodesic_world.y) + abs(car.ang_vel.y)) * alpha.y
        alpha.z = self.q(abs(geodesic_world.z) + abs(car.ang_vel.z)) * alpha.z

        # set the desired next angular velocity
        ang_vel_next = car.ang_vel + alpha * dt

        # determine the controls that produce that angular velocity
        roll_pitch_yaw = AerialTurnManeuver.aerial_rpy(car.ang_vel, ang_vel_next, car.rot, dt)
        controls.roll = roll_pitch_yaw.x
        controls.pitch = roll_pitch_yaw.y
        controls.yaw = roll_pitch_yaw.z

        self._timer += dt

        if ((norm(car.ang_vel) < self.epsilon_ang_vel and
             norm(geodesic_world) < self.epsilon_rotation) or
                self._timer >= self.timeout or car.on_ground):
            self.done = True

        controls.throttle = 1.0

        return controls
Example #8
0
def draw_circle(bot, center: Vec3, normal: Vec3, radius: float, pieces: int):
    # Construct the arm that will be rotated
    arm = normalize(cross(normal, center)) * radius
    angle = 2 * math.pi / pieces
    rotation_mat = axis_to_rotation(angle * normalize(normal))
    points = [center + arm]

    for i in range(pieces):
        arm = dot(rotation_mat, arm)
        points.append(center + arm)

    bot.renderer.draw_polyline_3d(points, bot.renderer.orange())
Example #9
0
    def circle(self, center: Vec3, normal: Vec3, radius: float, color):
        # Construct the arm that will be rotated
        pieces = int(radius**0.7) + 5
        arm = normalize(vec.cross(normal, center)) * radius
        angle = 2 * math.pi / pieces
        rotation_mat = axis_to_rotation(angle * normalize(normal))
        points = [center + arm]

        for i in range(pieces):
            arm = dot(rotation_mat, arm)
            points.append(center + arm)

        self.renderer.draw_polyline_3d(points, color)
Example #10
0
    def stay_at(self, bot, point: Vec3, looking_at: Vec3):

        OKAY_DIST = 100

        car = bot.info.my_car
        car_to_point = point - car.pos
        car_to_point_dir = normalize(point - car.pos)
        dist = norm(car_to_point)

        if dist > OKAY_DIST:
            return self.towards_point(bot, point, int(dist * 2))
        else:
            look_dir = normalize(looking_at - car.pos)
            facing_correctly = dot(car.forward, look_dir) > 0.9
            if facing_correctly:
                return SimpleControllerState()
            else:
                ctrls = SimpleControllerState()
                ctrls.throttle = 0.7 * sign(dot(car.forward, car_to_point_dir))
                ctrls.steer = -ctrls.throttle * sign(
                    dot(car.left, car_to_point_dir))

                return ctrls
Example #11
0
    def exec(self, bot):

        car = bot.info.my_car
        ball = bot.info.ball

        car_to_ball = ball.pos - car.pos
        ball_to_enemy_goal = bot.info.enemy_goal - ball.pos
        own_goal_to_ball = ball.pos - bot.info.own_goal
        dist = norm(car_to_ball)

        offence = ball.pos.y * bot.info.team_sign < 0
        dot_enemy = dot(car_to_ball, ball_to_enemy_goal)
        dot_own = dot(car_to_ball, own_goal_to_ball)
        right_side_of_ball = dot_enemy > 0 if offence else dot_own > 0

        if right_side_of_ball:
            # Aim cone
            dir_to_post_1 = (bot.info.enemy_goal +
                             Vec3(3800, 0, 0)) - bot.info.ball.pos
            dir_to_post_2 = (bot.info.enemy_goal +
                             Vec3(-3800, 0, 0)) - bot.info.ball.pos
            cone = AimCone(dir_to_post_1, dir_to_post_2)
            cone.get_goto_point(bot, car.pos, bot.info.ball.pos)
            if bot.do_rendering:
                cone.draw(bot, bot.info.ball.pos)

            # Chase ball
            return bot.drive.go_towards_point(bot,
                                              xy(ball.pos),
                                              2000,
                                              True,
                                              True,
                                              can_dodge=dist > 2200)
        else:
            # Go home
            return bot.drive.go_towards_point(bot, bot.info.own_goal_field,
                                              2000, True, True)
Example #12
0
def sdf_wall_dist(point: Vec3) -> float:
    """
    Returns the distance to the nearest wall of using an SDF approximation.
    The result is negative if the point is outside the arena.
    """

    # SDF box https://www.youtube.com/watch?v=62-pRVZuS5c
    # SDF rounded corners https://www.youtube.com/watch?v=s5NGeUV2EyU

    ONES = Vec3(1, 1, 1)

    # Base cube
    base_q = abs(point -
                 Vec3(z=Field.HEIGHT / 2)) - SEMI_SIZE + ONES * ROUNDNESS
    base_dist_outside = norm(vec_max(base_q, Vec3()))
    base_dist_inside = min(max_comp(base_q), 0)
    base_dist = base_dist_outside + base_dist_inside

    # Corners cube
    corner_q = abs((dot(ROT_45_MAT, point)) - Vec3(
        z=Field.HEIGHT / 2)) - CORNER_SEMI_SIZE + ONES * ROUNDNESS
    corner_dist_outside = norm(vec_max(corner_q, Vec3()))
    corner_dist_inside = min(max_comp(corner_q), 0)
    corner_dist = corner_dist_outside + corner_dist_inside

    # Intersection of base and corners
    base_corner_dist = max(base_dist, corner_dist) - ROUNDNESS

    # Goals cube
    goals_q = abs(point - Vec3(z=Field.GOAL_HEIGHT /
                               2)) - GOALS_SEMI_SIZE + ONES * ROUNDNESS
    goals_dist_outside = norm(vec_max(goals_q, Vec3()))
    goals_dist_inside = min(max_comp(goals_q), 0)
    goals_dist = base_dist_outside + base_dist_inside

    # Union with goals and invert result
    return -min(base_corner_dist, goals_dist)
    def update(self, bot):
        ball = bot.info.ball

        # Find closest foe to ball
        self.opp_closest_to_ball, self.opp_closest_to_ball_dist = argmin(bot.info.opponents, lambda opp: norm(opp.pos - ball.pos))

        # Possession and on/off-site
        self.car_with_possession = None
        self.ally_with_possession = None
        self.opp_with_possession = None
        for car in bot.info.cars:

            # Effective position
            car.effective_pos = car.pos + xy(car.vel) * 0.8

            # On site
            car_to_ball = ball.pos - car.pos
            car_to_ball_unit = normalize(car_to_ball)
            car.onsite = dot(Vec3(y=-car.team_sign), car_to_ball_unit)

            # Reach ball time
            car.reach_ball_time = predict.time_till_reach_ball(car, ball)
            reach01 = 1 - 0.9 * lin_fall(car.reach_ball_time, 4) ** 0.5

            # Possession
            point_in_front = car.pos + car.vel * 0.5
            ball_point_dist = norm(ball.pos - point_in_front)
            dist01 = 1000 / (1000 + ball_point_dist)  # Halved after 1000 uu of dist, 1/3 at 2000
            in_front01 = (dot(car.forward, car_to_ball_unit) + 1) / 2.0
            car.possession = dist01 * in_front01 * reach01
            if self.car_with_possession is None or car.possession > self.car_with_possession.possession:
                self.car_with_possession = car
            if car.team == bot.team and (self.ally_with_possession is None or car.possession > self.ally_with_possession.possession):
                self.ally_with_possession = car
            if car.team != bot.team and (self.opp_with_possession is None or car.possession > self.opp_with_possession.possession):
                self.opp_with_possession = car

        # Objectives
        if len(bot.info.team_cars) == 1:
            # No team mates. No roles
            bot.info.my_car.objective = bot.info.my_car.last_objective = Objective.SOLO
            return

        for car in bot.info.cars:
            car.last_objective = car.objective
            car.objective = Objective.UNKNOWN

        attacker, attacker_score = argmax(bot.info.team_cars,
                                          lambda ally: ((1.0 if ally.last_objective == Objective.GO_FOR_IT else 0.73)
                                                        * ease_out(0.2 + 0.8 * ally.boost / 100, 2)  # 50 boost is 0.85, 0 boost is 0.2
                                                        * ally.possession
                                                        * ally.got_it_according_to_quick_chat_01(bot.info.time)
                                                        * (1.0 if ally.onsite else 0.5)
                                                        * (0 if ally.is_demolished else 1)))

        attacker.objective = Objective.GO_FOR_IT
        self.ideal_follow_up_pos = xy(ball.pos + bot.info.own_goal.pos) * 0.5
        follower, follower_score = argmax([ally for ally in bot.info.team_cars if ally.objective == Objective.UNKNOWN],
                                          lambda ally: (1.0 if ally.last_objective == Objective.FOLLOW_UP else 0.73)
                                                        * ease_out(0.2 * 0.8 * ally.boost / 100, 2)
                                                        * (1 + ally.onsite / 2)
                                                        * lin_fall(norm(ally.effective_pos - self.ideal_follow_up_pos), 3000)
                                                        * (0 if ally.is_demolished else 1))
        if follower is not None:
            follower.objective = Objective.FOLLOW_UP
        for car in bot.info.team_cars:
            if car.objective == Objective.UNKNOWN:
                car.objective = Objective.ROTATING
Example #14
0
    def exec(self, bot) -> SimpleControllerState:

        car = bot.info.my_car
        ball = bot.info.ball

        my_hit_time = predict.time_till_reach_ball(car, ball)
        shoot_controls = bot.shoot.with_aiming(bot, self.aim_cone, my_hit_time)
        if bot.do_rendering:
            self.aim_cone.draw(bot, bot.shoot.ball_when_hit.pos, b=0)

        hit_pos = bot.shoot.ball_when_hit.pos
        dist = norm(car.pos - hit_pos)
        closest_enemy, enemy_dist = bot.info.closest_enemy(
            0.5 * (hit_pos + ball.pos))

        if not bot.shoot.can_shoot and is_closer_to_goal_than(
                car.pos, hit_pos, bot.info.team):
            # Can't shoot but or at least on the right side: Chase

            goal_to_ball = normalize(hit_pos - bot.info.enemy_goal)
            offset_ball = hit_pos + goal_to_ball * Ball.RADIUS * 0.9
            enemy_hit_time = predict.time_till_reach_ball(closest_enemy, ball)
            enemy_hit_pos = predict.ball_predict(bot, enemy_hit_time).pos
            if enemy_hit_time < 1.5 * my_hit_time:
                self.temp_utility_desire_boost -= bot.info.dt
                if bot.do_rendering:
                    bot.renderer.draw_line_3d(closest_enemy.pos, enemy_hit_pos,
                                              bot.renderer.red())
                return bot.drive.go_home(bot)

            if bot.do_rendering:
                bot.renderer.draw_line_3d(car.pos, offset_ball,
                                          bot.renderer.yellow())

            return bot.drive.go_towards_point(bot,
                                              offset_ball,
                                              target_vel=2200,
                                              slide=False,
                                              boost_min=0)

        elif not bot.shoot.aim_is_ok and hit_pos.y * -bot.info.team_sign > 4250 and abs(
                hit_pos.x) > 900 and not dist < 420:
            # hit_pos is an enemy corner and we are not close: Avoid enemy corners and just wait

            enemy_to_ball = normalize(hit_pos - closest_enemy.pos)
            wait_point = hit_pos + enemy_to_ball * enemy_dist  # a point 50% closer to the center of the field
            wait_point = lerp(wait_point,
                              ball.pos + Vec3(0, bot.info.team_sign * 3000, 0),
                              0.5)

            if bot.do_rendering:
                bot.renderer.draw_line_3d(car.pos, wait_point,
                                          bot.renderer.yellow())

            return bot.drive.go_towards_point(bot,
                                              wait_point,
                                              norm(car.pos - wait_point),
                                              slide=False,
                                              can_keep_speed=True,
                                              can_dodge=False)

        elif not bot.shoot.can_shoot:

            enemy_to_ball = normalize(xy(ball.pos - closest_enemy.pos))
            ball_to_my_goal = normalize(xy(bot.info.own_goal - ball.pos))
            dot_threat = dot(
                enemy_to_ball, ball_to_my_goal
            )  # 1 = enemy is in position, -1 = enemy is NOT in position

            if car.boost == 0 and ball.pos.y * bot.info.team_sign < 500 and dot_threat < 0.1:

                collect_center = ball.pos.y * bot.info.team_sign <= 0
                collect_small = closest_enemy.pos.y * bot.info.team_sign <= 0 or enemy_dist < 900
                pads = filter_pads(bot,
                                   bot.info.big_boost_pads,
                                   big_only=not collect_small,
                                   enemy_side=False,
                                   center=collect_center)
                bot.maneuver = CollectClosestBoostManeuver(bot, pads)
            # return home
            return bot.drive.go_home(bot)

        else:
            # Shoot !
            if bot.shoot.using_curve and bot.do_rendering:
                rendering.draw_bezier(
                    bot, [car.pos, bot.shoot.curve_point, hit_pos])
            return shoot_controls
Example #15
0
    def with_aiming(self,
                    bot,
                    aim_cone: AimCone,
                    time: float,
                    dodge_hit: bool = True):

        #       aim: |           |           |           |
        #  ball      |   bad     |    ok     |   good    |
        # z pos:     |           |           |           |
        # -----------+-----------+-----------+-----------+
        #  too high  |   give    |   give    |   wait/   |
        #            |    up     |    up     |  improve  |
        # -----------+ - - - - - + - - - - - + - - - - - +
        #   medium   |   give    |  improve  |  aerial   |
        #            |    up     |    aim    |           |
        # -----------+ - - - - - + - - - - - + - - - - - +
        #   soon on  |  improve  |  slow     |   small   |
        #   ground   |    aim    |  curve    |   jump    |
        # -----------+ - - - - - + - - - - - + - - - - - +
        #  on ground |  improve  |  fast     |  fast     |
        #            |   aim??   |  curve    |  straight |
        # -----------+ - - - - - + - - - - - + - - - - - +

        # FIXME if the ball is not on the ground we treat it as 'soon on ground' in all other cases

        self.controls = SimpleControllerState()
        self.aim_is_ok = False
        self.waits_for_fall = False
        self.ball_is_flying = False
        self.can_shoot = False
        self.using_curve = False
        self.curve_point = None
        self.ball_when_hit = None
        car = bot.info.my_car

        ball_soon = ball_predict(bot, time)
        car_to_ball_soon = ball_soon.pos - car.pos
        dot_facing_score = dot(normalize(car_to_ball_soon),
                               normalize(car.forward))
        vel_towards_ball_soon = proj_onto_size(car.vel, car_to_ball_soon)
        is_facing = 0 < dot_facing_score

        if ball_soon.pos.z < 110 or (ball_soon.pos.z < 475 and ball_soon.vel.z
                                     <= 0) or True:  #FIXME Always true

            # The ball is on the ground or soon on the ground

            if 275 < ball_soon.pos.z < 475 and aim_cone.contains_direction(
                    car_to_ball_soon):
                # Can we hit it if we make a small jump?
                vel_f = proj_onto_size(car.vel, xy(car_to_ball_soon))
                car_expected_pos = car.pos + car.vel * time
                ball_soon_flat = xy(ball_soon.pos)
                diff = norm(car_expected_pos - ball_soon_flat)
                ball_in_front = dot(ball_soon.pos - car_expected_pos,
                                    car.vel) > 0

                if bot.do_rendering:
                    bot.renderer.draw_line_3d(car.pos, car_expected_pos,
                                              bot.renderer.lime())
                    bot.renderer.draw_rect_3d(car_expected_pos, 12, 12, True,
                                              bot.renderer.lime())

                if vel_f > 400:
                    if diff < 150 and ball_in_front:
                        bot.maneuver = SmallJumpManeuver(
                            bot, lambda b: b.info.ball.pos)

            if 110 < ball_soon.pos.z:  # and ball_soon.vel.z <= 0:
                # The ball is slightly in the air, lets wait just a bit more
                self.waits_for_fall = True
                ball_landing = next_ball_landing(bot, ball_soon, size=100)
                time = time + ball_landing.time
                ball_soon = ball_predict(bot, time)
                car_to_ball_soon = ball_soon.pos - car.pos

            self.ball_when_hit = ball_soon

            # The ball is on the ground, are we in position for a shot?
            if aim_cone.contains_direction(car_to_ball_soon) and is_facing:

                # Straight shot

                self.aim_is_ok = True
                self.can_shoot = True

                if norm(car_to_ball_soon) < 240 + Ball.RADIUS and aim_cone.contains_direction(car_to_ball_soon)\
                        and vel_towards_ball_soon > 300:
                    bot.drive.start_dodge(bot)

                offset_point = xy(
                    ball_soon.pos) - 50 * aim_cone.get_center_dir()
                speed = self.determine_speed(norm(car_to_ball_soon), time)
                self.controls = bot.drive.go_towards_point(
                    bot,
                    offset_point,
                    target_vel=speed,
                    slide=True,
                    boost_min=0,
                    can_keep_speed=False)
                return self.controls

            elif aim_cone.contains_direction(car_to_ball_soon, math.pi / 5):

                # Curve shot

                self.aim_is_ok = True
                self.using_curve = True
                self.can_shoot = True

                offset_point = xy(
                    ball_soon.pos) - 50 * aim_cone.get_center_dir()
                closest_dir = aim_cone.get_closest_dir_in_cone(
                    car_to_ball_soon)
                self.curve_point = curve_from_arrival_dir(
                    car.pos, offset_point, closest_dir)

                self.curve_point.x = clip(self.curve_point.x, -Field.WIDTH / 2,
                                          Field.WIDTH / 2)
                self.curve_point.y = clip(self.curve_point.y,
                                          -Field.LENGTH / 2, Field.LENGTH / 2)

                if dodge_hit and norm(car_to_ball_soon) < 240 + Ball.RADIUS and angle_between(car.forward, car_to_ball_soon) < 0.5\
                        and aim_cone.contains_direction(car_to_ball_soon) and vel_towards_ball_soon > 300:
                    bot.drive.start_dodge(bot)

                speed = self.determine_speed(norm(car_to_ball_soon), time)
                self.controls = bot.drive.go_towards_point(
                    bot,
                    self.curve_point,
                    target_vel=speed,
                    slide=True,
                    boost_min=0,
                    can_keep_speed=False)
                return self.controls

            else:

                # We are NOT in position!
                self.aim_is_ok = False

                pass

        else:

            if aim_cone.contains_direction(car_to_ball_soon):
                self.waits_for_fall = True
                self.aim_is_ok = True
                #self.can_shoot = False
                pass  # Allow small aerial (wait if ball is too high)

            elif aim_cone.contains_direction(car_to_ball_soon, math.pi / 4):
                self.ball_is_flying = True
                pass  # Aim is ok, but ball is in the air
Example #16
0
    def exec(self, bot):

        if not self.announced_in_quick_chat:
            self.announced_in_quick_chat = True
            bot.send_quick_chat(QuickChats.CHAT_EVERYONE, QuickChats.Information_IGotIt)

        ct = bot.info.time
        car = bot.info.my_car
        up = car.up
        controls = SimpleControllerState()

        # Time remaining till intercept time
        T = self.intercept_time - bot.info.time
        # Expected future position
        xf = car.pos + car.vel * T + 0.5 * GRAVITY * T ** 2
        # Expected future velocity
        vf = car.vel + GRAVITY * T

        # Is set to false while jumping to avoid FeelsBackFlipMan
        rotate = True

        if self.jumping:
            if self.jump_begin_time == -1:
                jump_elapsed = 0
                self.jump_begin_time = ct
            else:
                jump_elapsed = ct - self.jump_begin_time

            # How much longer we can press jump and still gain upward force
            tau = JUMP_MAX_DUR - jump_elapsed

            # Add jump pulse
            if jump_elapsed == 0:
                vf += up * JUMP_SPEED
                xf += up * JUMP_SPEED * T
                rotate = False

            # Acceleration from holding jump
            vf += up * JUMP_SPEED * tau
            xf += up * JUMP_SPEED * tau * (T - 0.5 * tau)

            if self.do_second_jump:
                # Impulse from the second jump
                vf += up * JUMP_SPEED
                xf += up * JUMP_SPEED * (T - tau)

            if jump_elapsed < JUMP_MAX_DUR:
                controls.jump = True
            else:
                controls.jump = False
                if self.do_second_jump:
                    if self.jump_pause_counter < 4:
                        # Do a 4-tick pause between jumps
                        self.jump_pause_counter += 1
                    else:
                        # Time to start second jump
                        # we do this by resetting our jump counter and pretend and our aerial started in the air
                        self.jump_begin_time = -1
                        self.jumping = True
                        self.do_second_jump = False
                else:
                    # We are done jumping
                    self.jumping = False
        else:
            controls.jump = False

        delta_pos = self.hit_pos - xf
        direction = normalize(delta_pos)
        car_to_hit_pos = self.hit_pos - car.pos

        dodging = self.dodge_begin_time != -1
        if dodging:
            controls.jump = True

        # We are not pressing jump, so let's align the car
        if rotate and not dodging:

            if self.do_dodge and norm(car_to_hit_pos) < Ball.RADIUS + 80:
                # Start dodge

                self.dodge_begin_time = ct

                hit_local = dot(car_to_hit_pos, car.rot)
                hit_local.z = 0

                dodge_direction = normalize(hit_local)

                controls.roll = 0
                controls.pitch = -dodge_direction.x
                controls.yaw = sign(car.rot.get(2, 2)) * direction.y
                controls.jump = True

            else:
                # Adjust orientation
                if norm(delta_pos) > 50:
                    pd = bot.fly.align(bot, looking_in_dir(delta_pos))
                else:
                    if self.target_rot is not None:
                        pd = bot.fly.align(bot, self.target_rot)
                    else:
                        pd = bot.fly.align(bot, looking_in_dir(self.hit_pos - car.pos))

                controls.roll = pd.roll
                controls.pitch = pd.pitch
                controls.yaw = pd.yaw

        if not dodging and angle_between(car.forward, direction) < 0.3:
            if norm(delta_pos) > 40:
                controls.boost = 1
                controls.throttle = 0
            else:
                controls.boost = 0
                controls.throttle = clip01(0.5 * THROTTLE_AIR_ACCEL * T ** 2)
        else:
            controls.boost = 0
            controls.throttle = 0

        prediction = predict.ball_predict(bot, T)
        self.done = T < 0
        if norm(self.hit_pos - prediction.pos) > 50:
            # Jump shot failed
            self.done = True
            bot.send_quick_chat(QuickChats.CHAT_EVERYONE, QuickChats.Apologies_Cursing)

        if bot.do_rendering:
            car_to_hit_dir = normalize(self.hit_pos - car.pos)
            color = bot.renderer.pink()
            rendering.draw_cross(bot, self.hit_pos, color, arm_length=100)
            rendering.draw_circle(bot, lerp(car.pos, self.hit_pos, 0.25), car_to_hit_dir, 40, 12, color)
            rendering.draw_circle(bot, lerp(car.pos, self.hit_pos, 0.5), car_to_hit_dir, 40, 12, color)
            rendering.draw_circle(bot, lerp(car.pos, self.hit_pos, 0.75), car_to_hit_dir, 40, 12, color)
            bot.renderer.draw_line_3d(car.pos, self.hit_pos, color)

        return controls
Example #17
0
    def towards_point(self,
                      bot,
                      point: Vec3,
                      target_vel=1430,
                      slide=False,
                      boost_min=101,
                      can_keep_speed=True,
                      can_dodge=True,
                      wall_offset_allowed=125) -> SimpleControllerState:
        REQUIRED_ANG_FOR_SLIDE = 1.65
        REQUIRED_VELF_FOR_DODGE = 1100

        car = bot.info.my_car

        # Dodge is done
        if self.dodge is not None and self.dodge.done:
            self.dodge = None
            self.last_dodge_end_time = bot.info.time
        # Continue dodge
        elif self.dodge is not None:
            self.dodge.target = point
            return self.dodge.exec(bot)

        # Begin recovery
        if not car.on_ground:
            bot.maneuver = RecoveryManeuver()
            return self.controls

        # Get down from wall by choosing a point close to ground
        if not is_near_wall(point, wall_offset_allowed) and angle_between(
                car.up, Vec3(0, 0, 1)) > math.pi * 0.31:
            point = lerp(xy(car.pos), xy(point), 0.5)

        # If the car is in a goal, avoid goal posts
        self._avoid_goal_post(bot, point)

        car_to_point = point - car.pos

        # The vector from the car to the point in local coordinates:
        # point_local.x: how far in front of my car
        # point_local.y: how far to the left of my car
        # point_local.z: how far above my car
        point_local = dot(point - car.pos, car.rot)

        # Angle to point in local xy plane and other stuff
        angle = math.atan2(point_local.y, point_local.x)
        dist = norm(point_local)
        vel_f = proj_onto_size(car.vel, car.forward)
        vel_towards_point = proj_onto_size(car.vel, car_to_point)

        # Start dodge
        if can_dodge and abs(angle) <= 0.02 and vel_towards_point > REQUIRED_VELF_FOR_DODGE\
                and dist > vel_towards_point + 500 + 900 and bot.info.time > self.last_dodge_end_time + self.dodge_cooldown:
            self.dodge = DodgeManeuver(bot, point)
        # Start half-flip
        elif can_dodge and abs(angle) >= 3 and vel_towards_point < 0\
                and dist > -vel_towards_point + 500 + 900 and bot.info.time > self.last_dodge_end_time + self.dodge_cooldown:
            self.dodge = HalfFlipManeuver(bot,
                                          boost=car.boost > boost_min + 10)

        # Is point right behind? Maybe reverse instead
        if -100 < point_local.x < 0 and abs(point_local.y) < 50:
            #bot.print("Reversing?")
            pass

        # Is in turn radius deadzone?
        tr = turn_radius(abs(vel_f + 50))  # small bias
        tr_side = sign(angle)
        tr_center_local = Vec3(0, tr * tr_side, 10)
        point_is_in_turn_radius_deadzone = norm(point_local -
                                                tr_center_local) < tr
        # Draw turn radius deadzone
        if car.on_ground and False:
            tr_center_world = car.pos + dot(car.rot, tr_center_local)
            tr_center_world_2 = car.pos + dot(car.rot, -1 * tr_center_local)
            color = draw.orange()
            draw.circle(tr_center_world, car.up, tr, color)
            draw.circle(tr_center_world_2, car.up, tr, color)

        if point_is_in_turn_radius_deadzone:
            # Hard turn
            self.controls.steer = sign(angle)
            self.controls.boost = False
            self.controls.throttle = 0 if vel_f > 150 else 0.1
            if point_local.x < 110 and point_local.y < 400 and norm(
                    car.vel) < 300:
                # Brake or go backwards when the point is really close but not in front of us
                self.controls.throttle = clip(-0.25 + point_local.x / -110.0,
                                              0, -1)
                self.controls.steer = -0.5 * sign(angle)

        else:
            # Should drop speed or just keep up the speed?
            if can_keep_speed and target_vel < vel_towards_point:
                target_vel = vel_towards_point
            else:
                # Small lerp adjustment
                target_vel = lerp(vel_towards_point, target_vel, 1.1)

            # Turn and maybe slide
            self.controls.steer = clip(angle + (2.5 * angle)**3, -1.0, 1.0)
            if slide and abs(angle) > REQUIRED_ANG_FOR_SLIDE:
                self.controls.handbrake = True
                self.controls.steer = sign(angle)
            else:
                self.controls.handbrake = False

            # Overshoot target vel for quick adjustment
            target_vel = lerp(vel_towards_point, target_vel, 1.2)

            # Find appropriate throttle/boost
            if vel_towards_point < target_vel:
                self.controls.throttle = 1
                if boost_min < car.boost and vel_towards_point + 80 < target_vel and target_vel > 1400 \
                        and not self.controls.handbrake and is_heading_towards(angle, dist):
                    self.controls.boost = True
                else:
                    self.controls.boost = False

            else:
                vel_delta = target_vel - vel_towards_point
                self.controls.throttle = clip(0.2 + vel_delta / 500, 0, -1)
                self.controls.boost = False
                if self.controls.handbrake:
                    self.controls.throttle = min(0.4, self.controls.throttle)

        # Saved if something outside calls start_dodge() in the meantime
        self.last_point = point

        return self.controls
Example #18
0
    def with_aiming(self, bot, aim_cone: AimCone, time: float, dodge_hit: bool = True):

        #       aim: |           |           |           |
        #  ball      |   bad     |    ok     |   good    |
        # z pos:     |           |           |           |
        # -----------+-----------+-----------+-----------+
        #  too high  |   give    |   give    |   wait/   |
        #   > 1200   |    up     |    up     |  improve  |
        # -----------+ - - - - - + - - - - - + - - - - - +
        #   medium   |   give    |  improve  |  aerial   |
        #            |    up     |    aim    |           |
        # -----------+ - - - - - + - - - - - + - - - - - +
        #   soon on  |  improve  |  slow     |   small   |
        #   ground   |    aim    |  curve    |   jump    |
        # -----------+ - - - - - + - - - - - + - - - - - +
        #  on ground |  improve  |  fast     |  fast     |
        #            |   aim??   |  curve    |  straight |
        # -----------+ - - - - - + - - - - - + - - - - - +

        # FIXME if the ball is not on the ground we treat it as 'soon on ground' in all other cases

        self.controls = SimpleControllerState()
        self.aim_is_ok = False
        self.waits_for_fall = False
        self.ball_is_flying = False
        self.can_shoot = False
        self.using_curve = False
        self.curve_point = None
        car = bot.info.my_car

        ball_soon = ball_predict(bot, time)
        car_to_ball_soon = ball_soon.pos - car.pos
        dot_facing_score = dot(normalize(car_to_ball_soon), normalize(car.forward))
        dot_facing_score_2d = dot(normalize(xy(car_to_ball_soon)), normalize(xy(car.forward)))
        vel_towards_ball_soon = proj_onto_size(car.vel, car_to_ball_soon)
        is_facing = 0.1 < dot_facing_score
        is_facing_2d = 0.3 < dot_facing_score

        self.ball_when_hit = ball_soon

        if ball_soon.pos.z < 110:

            # The ball is on the ground

            if 110 < ball_soon.pos.z:  # and ball_soon.vel.z <= 0:
                # The ball is slightly in the air, lets wait just a bit more
                self.waits_for_fall = True
                ball_landing = next_ball_landing(bot, ball_soon, size=100)
                time = time + ball_landing.time
                ball_soon = ball_predict(bot, time)
                car_to_ball_soon = ball_soon.pos - car.pos

            self.ball_when_hit = ball_soon

            # The ball is on the ground, are we in position for a shot?
            if aim_cone.contains_direction(car_to_ball_soon) and is_facing:

                # Straight shot

                self.aim_is_ok = True
                self.can_shoot = True

                if norm(car_to_ball_soon) < 400 + Ball.RADIUS and aim_cone.contains_direction(car_to_ball_soon)\
                        and vel_towards_ball_soon > 300:
                    bot.drive.start_dodge(bot, towards_ball=True)

                offset_point = xy(ball_soon.pos) - 50 * aim_cone.get_center_dir()
                speed = self._determine_speed(norm(car_to_ball_soon), time)
                self.controls = bot.drive.towards_point(bot, offset_point, target_vel=speed, slide=True, boost_min=0, can_keep_speed=False)
                return self.controls

            elif aim_cone.contains_direction(car_to_ball_soon, math.pi / 5):

                # Curve shot

                self.aim_is_ok = True
                self.using_curve = True
                self.can_shoot = True

                offset_point = xy(ball_soon.pos) - 50 * aim_cone.get_center_dir()
                closest_dir = aim_cone.get_closest_dir_in_cone(car_to_ball_soon)
                self.curve_point = curve_from_arrival_dir(car.pos, offset_point, closest_dir)

                self.curve_point.x = clip(self.curve_point.x, -Field.WIDTH / 2, Field.WIDTH / 2)
                self.curve_point.y = clip(self.curve_point.y, -Field.LENGTH / 2, Field.LENGTH / 2)

                if dodge_hit and norm(car_to_ball_soon) < 400 + Ball.RADIUS and angle_between(car.forward, car_to_ball_soon) < 0.5\
                        and aim_cone.contains_direction(car_to_ball_soon) and vel_towards_ball_soon > 300:
                    bot.drive.start_dodge(bot, towards_ball=True)

                speed = self._determine_speed(norm(car_to_ball_soon), time)
                self.controls = bot.drive.towards_point(bot, self.curve_point, target_vel=speed, slide=True, boost_min=0, can_keep_speed=False)
                return self.controls

            else:

                # We are NOT in position!
                return None

        elif ball_soon.pos.z < 600 and ball_soon.vel.z <= 0:

            # Ball is on ground soon. Is it worth waiting? TODO if aim is bad, do a slow curve - or delete case?
            pass

        # ---------------------------------------
        # Ball is in the air, or going in the air

        if 200 < ball_soon.pos.z < 1400 and aim_cone.contains_direction(car_to_ball_soon) and is_facing_2d:

            # Can we hit it if we make jump shot or aerial shot?

            vel_f = proj_onto_size(car.vel, xy(car_to_ball_soon))
            aerial = ball_soon.pos.z > 750

            if vel_f > 400:  # Some forward momentum is required

                flat_dist = norm(xy(car_to_ball_soon))
                # This range should be good https://www.desmos.com/calculator/bx9imtiqi5
                good_height = 0.3 * ball_soon.pos.z < flat_dist < 4 * ball_soon.pos.z

                if good_height:

                    # Alternative ball positions
                    alternatives = [
                        (ball_predict(bot, time * 0.8), time * 0.8),
                        (ball_predict(bot, time * 0.9), time * 0.9),
                        (ball_soon, time),
                        (ball_predict(bot, time * 1.1), time * 1.1),
                        (ball_predict(bot, time * 1.2), time * 1.2)
                    ]

                    for alt_ball, alt_time in alternatives:

                        potential_small_jump_shot = JumpShotManeuver(bot, alt_ball.pos, bot.info.time + alt_time, do_second_jump=aerial)
                        jump_shot_viable = potential_small_jump_shot.is_viable(car, bot.info.time)

                        if jump_shot_viable:
                            self.can_shoot = True
                            self.aim_is_ok = True
                            bot.maneuver = potential_small_jump_shot
                            return bot.maneuver.exec(bot)

        self.ball_is_flying = True
        return self.controls
Example #19
0
def intersects_normal(src: Vec3, dest: Vec3, plane_normal: Vec3) -> bool:
    # Also, if one of the points are on the plane, true is returned
    return dot(src, plane_normal) * dot(dest, plane_normal) <= 0
Example #20
0
def project_onto_normal(pos: Vec3, normal: Vec3) -> Vec3:
    dist = dot(pos, normal)
    antidote = -dist * normal
    return pos + antidote
Example #21
0
    def run(self, bot) -> SimpleControllerState:

        car = bot.info.my_car
        ball = bot.info.ball

        my_hit_time = predict.time_till_reach_ball(car, ball)
        reachable_ball = predict.ball_predict(bot, predict.time_till_reach_ball(car, ball))
        ball_to_goal_right = bot.info.opp_goal.right_post - reachable_ball.pos
        ball_to_goal_left = bot.info.opp_goal.left_post - reachable_ball.pos
        aim_cone = AimCone(ball_to_goal_right, ball_to_goal_left)
        shoot_controls = bot.shoot.with_aiming(bot, aim_cone, my_hit_time)

        hit_pos = bot.shoot.ball_when_hit.pos
        dist = norm(car.pos - hit_pos)
        closest_enemy, enemy_dist = bot.info.closest_enemy(0.5 * (hit_pos + ball.pos))

        if not bot.shoot.can_shoot and is_closer_to_goal_than(car.pos, hit_pos, bot.info.team):
            # Can't shoot but or at least on the right side: Chase

            goal_to_ball = normalize(hit_pos - bot.info.opp_goal.pos)
            offset_ball = hit_pos + goal_to_ball * Ball.RADIUS * 0.9
            enemy_hit_time = predict.time_till_reach_ball(closest_enemy, ball)
            enemy_hit_pos = predict.ball_predict(bot, enemy_hit_time).pos
            if enemy_hit_time < 1.5 * my_hit_time:
                if bot.do_rendering:
                    bot.renderer.draw_line_3d(closest_enemy.pos, enemy_hit_pos, bot.renderer.red())
                return bot.drive.home(bot)

            if bot.do_rendering:
                bot.renderer.draw_line_3d(car.pos, offset_ball, bot.renderer.yellow())

            return bot.drive.towards_point(bot, offset_ball, target_vel=2200, slide=False, boost_min=0)

        elif len(bot.info.teammates) == 0 and not bot.shoot.aim_is_ok and hit_pos.y * -bot.info.team_sign > 4250 and abs(hit_pos.x) > 900 and not dist < 420:
            # hit_pos is an enemy corner and we are not close: Avoid enemy corners in 1s and just wait

            enemy_to_ball = normalize(hit_pos - closest_enemy.pos)
            wait_point = hit_pos + enemy_to_ball * enemy_dist  # a point 50% closer to the center of the field
            wait_point = lerp(wait_point, ball.pos + Vec3(0, bot.info.team_sign * 3000, 0), 0.5)

            if bot.do_rendering:
                bot.renderer.draw_line_3d(car.pos, wait_point, bot.renderer.yellow())

            return bot.drive.towards_point(bot, wait_point, norm(car.pos - wait_point), slide=False, can_keep_speed=True, can_dodge=False)

        elif bot.shoot.can_shoot:

            # Shoot !
            if bot.do_rendering:
                aim_cone.draw(bot, bot.shoot.ball_when_hit.pos, r=0, b=0)
                if bot.shoot.using_curve:
                    rendering.draw_bezier(bot, [car.pos, bot.shoot.curve_point, hit_pos])
            return shoot_controls

        else:
            # We can't shoot at goal reliably
            # How about a shot to the corners then?
            corners = [
                Vec3(-Field.WIDTH2, -bot.info.team_sign * Field.LENGTH2, 0),
                Vec3(Field.WIDTH2, -bot.info.team_sign * Field.LENGTH2, 0),
            ]
            for corner in corners:
                ctrls = bot.shoot.towards(bot, corner, bot.info.my_car.reach_ball_time)
                if bot.shoot.can_shoot:
                    aim_cone.draw(bot, bot.shoot.ball_when_hit.pos, b=0)
                    if bot.shoot.using_curve:
                        rendering.draw_bezier(bot, [car.pos, bot.shoot.curve_point, hit_pos])
                    return ctrls

            enemy_to_ball = normalize(xy(ball.pos - closest_enemy.pos))
            ball_to_my_goal = normalize(xy(bot.info.own_goal.pos - ball.pos))
            dot_threat = dot(enemy_to_ball, ball_to_my_goal)  # 1 = enemy is in position, -1 = enemy is NOT in position

            if car.boost <= 10 and ball.pos.y * bot.info.team_sign < 0 and dot_threat < 0.15:
                collect_center = ball.pos.y * bot.info.team_sign <= 0
                collect_small = closest_enemy.pos.y * bot.info.team_sign <= 0 or enemy_dist < 900
                pads = filter_pads(bot, bot.info.big_boost_pads, big_only=not collect_small, enemy_side=False,
                                   center=collect_center)
                bot.maneuver = CollectClosestBoostManeuver(bot, pads)

            # return home-ish
            return bot.drive.stay_at(bot, lerp(bot.info.own_goal.pos, ball.pos, 0.2), ball.pos)
Example #22
0
def dist_to_plane(pos: Vec3, plane: Plane) -> float:
    return abs(dot(pos - plane.offset, plane.normal))