Example #1
0
def saveParameters(fileDir):
    # Model name 1 mean dataset`s folder 1.
    model_name = '1'
    detection_model = objectDetector.load_model(model_name)
    # File is directory
    files = utility.get_filenames(fileDir)
    fileNames = []
    domColors = []
    wallColors = []
    floorColors = []

    for f in files:
        if "." not in f:
            continue
        print("Now proceeding ", f, " [ ", files.index(f), " ]")

        coord, str_tag, number_tag, score = objectDetector.inference(
            detection_model, f)

        # Save file name make.
        save_file_name = utility.add_name(f, "_od", extension="bin")
        dirs = save_file_name.split("/")

        save_image_name = ""
        for d in dirs[0:-1]:
            save_image_name += d + "/"
        save_image_name += f.split("/")[-1].split(".")[0] + "/"

        utility.make_dir(save_image_name)

        rect_files = []
        additional_infor = []

        for i in range(len(str_tag)):
            additional_infor.append(-1)
            rect_image = image_processing.get_rect_image(
                f, int(coord[i][0]), int(coord[i][1]), int(coord[i][2]),
                int(coord[i][3]))
            rect_image_name = save_image_name + f.split("/")[-1]
            rect_image_name = utility.add_name(rect_image_name, "_" + str(i))
            rect_files.append(rect_image_name)
            utility.save_image(rect_image, rect_image_name)

        dom_color = image_processing.get_dominant_color(f)
        n_color = utility.get_remarkable_color_n(dom_color, MAX_COLOR_LENGTH)
        fileNames.append(os.path.basename(f))
        domColors.append(n_color)
        wallColors.append([])
        floorColors.append([])
        utility.save_result([
            coord, str_tag, number_tag, score, rect_files, additional_infor,
            n_color
        ], save_file_name)

    utility.save_result([files, domColors, wallColors, floorColors],
                        config.RESEARCH_BASE_FILE)
Example #2
0
def getPartChangedImage(inputFile,
                        outputFile,
                        str_tag,
                        coord,
                        rect_files,
                        selectedPreferenceImage,
                        i,
                        j,
                        ratio=(0.5, 0.5)):
    partChangedOutFile = utility.add_name(outputFile,
                                          "_changed_" + str(i) + str(j))
    original_image = utility.read_image(inputFile)
    resized_coord = utility.change_arrcoords(coord, ratio=ratio)
    recommand_furniture = []
    changed_log = []

    for k in range(len(str_tag)):
        if (str_tag[k] == "sofa" or str_tag[k] == "chair"):
            inpaintingRandomValue = random.randint(0, 9)
            furniture_file = rect_files[k]
            # 만약 userinput 이 있다면, 그것을 대신 사용.
            if utility.is_exist(utility.get_userinput_bin(furniture_file)):
                furniture_data_file = utility.get_userinput_bin(furniture_file)
            else:
                furniture_data_file = utility.get_bin(furniture_file)
            styled_furniture, change_color = styleTransfer(
                furniture_file,
                furniture_data_file,
                selectedPreferenceImage,
                inpaintingRandomValue,
                ratio=ratio)
            original_image = image_processing.add_up_image_to(original_image, styled_furniture, \
             int(resized_coord[k][0]), int(resized_coord[k][1]), int(resized_coord[k][2]), int(resized_coord[k][3]))
            rec_furn = getRecommandFurnitureForImage(selectedPreferenceImage,
                                                     str_tag[k])
            if len(rec_furn) < 3:
                utility.logging(selectedPreferenceImage)
                utility.logging(str(rec_furn))
                recommand_furniture.append(["", "", ""])
            else:
                recommand_furniture.append(random.sample(rec_furn, 3))
            changed_log.append([resized_coord[k], change_color])

    out_res_file = utility.add_name(partChangedOutFile,
                                    "_result",
                                    extension=".bin")
    utility.save_result([changed_log, recommand_furniture], out_res_file)
    utility.save_image(original_image, partChangedOutFile)
    return partChangedOutFile, out_res_file
Example #3
0
def re_segmentation(fileDir, resegIndex):
    fileNames = utility.get_filenames(fileDir)
    for fIndex in range(len(fileNames)):
        f = fileNames[fIndex]
        odf = utility.get_od_bin(f)
        [
            coord, str_tag, number_tag, score, rect_files, additional_infor,
            n_color
        ] = utility.load_result(odf)

        for i in resegIndex[fIndex]:
            rect_data_file = utility.get_bin(rect_files[i])
            print(rect_data_file, " will be re-generated. : ", str_tag[i])
            segment(rect_files[i], utility.add_name(rect_files[i], "_divided"),
                    rect_data_file)
Example #4
0
def changeWallFloor(inputFile,
                    outputFile,
                    wall_divided,
                    wall_total,
                    wall_number,
                    i,
                    preferWallColor,
                    preferFloorColor,
                    ratio=(0.5, 0.5)):
    wfOutputFile = utility.add_name(outputFile, "_wfColor" + str(i))
    styler.change_dest_color(inputFile, wfOutputFile, preferWallColor[i], \
     wall_divided, wall_total, [wall_total[wall_number.index(segmentation.WALL_CLASS)][0]],\
     touch_hint=wall_number.index(segmentation.WALL_CLASS), ratio=ratio)
    styler.change_dest_color(wfOutputFile, wfOutputFile, preferFloorColor[i], \
     wall_divided, wall_total, [wall_total[wall_number.index(segmentation.FLOOR_CLASS)][0]],\
     touch_hint=wall_number.index(segmentation.FLOOR_CLASS))
    return wfOutputFile
Example #5
0
def saveParameter(fileName, detection_model):
    coord, str_tag, number_tag, score = objectDetector.inference(
        detection_model, fileName)

    # Save file name make.
    save_file_name = config.RESEARCH_BASE_DIR + "/" + os.path.basename(
        utility.get_od_bin(fileName))
    dirs = save_file_name.split("/")

    save_image_name = ""
    for d in dirs[0:-1]:
        save_image_name += d + "/"
    save_image_name += fileName.split("/")[-1].split(".")[0] + "/"

    utility.make_dir(save_image_name)

    rect_files = []
    additional_infor = []

    for i in range(len(str_tag)):
        additional_infor.append(-1)
        rect_image = image_processing.get_rect_image(fileName,
                                                     int(coord[i][0]),
                                                     int(coord[i][1]),
                                                     int(coord[i][2]),
                                                     int(coord[i][3]))
        rect_image_name = save_image_name + fileName.split("/")[-1]
        rect_image_name = utility.add_name(rect_image_name, "_" + str(i))
        rect_files.append(rect_image_name)
        utility.save_image(rect_image, rect_image_name)

    dom_color = image_processing.get_dominant_color(fileName)
    n_color = utility.get_remarkable_color_n(dom_color, MAX_COLOR_LENGTH)
    utility.save_result([
        coord, str_tag, number_tag, score, rect_files, additional_infor,
        n_color
    ], save_file_name)
    return [
        coord, str_tag, number_tag, score, rect_files, additional_infor,
        n_color
    ]
Example #6
0
def getODandSegment(inputFile, od_model):
    try:
        [coord, str_tag, number_tag, score, rect_files, additional_infor, n_color] = \
        utility.load_result(config.RESEARCH_BASE_DIR + "/" + os.path.basename(utility.get_od_bin(inputFile)))
    except:
        [
            coord, str_tag, number_tag, score, rect_files, additional_infor,
            n_color
        ] = imageClassifier.saveParameter(inputFile, od_model)  # Get OD Data
    for i in range(len(str_tag)):
        if str_tag[i] == "sofa" or str_tag[i] == "chair":
            if utility.is_exist(utility.get_userinput_bin(rect_files[i])):
                rect_data_file = utility.get_userinput_bin(rect_files[i])
            elif utility.is_exist(utility.get_bin(rect_files[i])):
                rect_data_file = utility.get_bin(rect_files[i])
            else:
                rect_data_file = utility.get_bin(rect_files[i])
                segment(rect_files[i],
                        utility.add_name(rect_files[i], "_divided"),
                        rect_data_file)
    return [
        coord, str_tag, number_tag, score, rect_files, additional_infor,
        n_color
    ]
Example #7
0
import matrix_processing
import image_processing

from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from PyQt5.QtCore import Qt
import config

# File Name global variale
# 608, 580, 543, 333*
RESEARCH_BASE_DIR = config.RESEARCH_BASE_DIR
IMAGE_BASE_NAME = "interior (704)"
IMAGE_INDEX = 0
IMAGE_NAME = "C:/MLDATA/" + IMAGE_BASE_NAME + "/" + IMAGE_BASE_NAME + "_" + str(
    IMAGE_INDEX) + ".jpg"
OUTPUT_FILE = RESEARCH_BASE_DIR + "/" + IMAGE_BASE_NAME + '/' + utility.add_name(
    IMAGE_NAME.split("/")[-1], "_divided")
SEG_FILE_NAME = RESEARCH_BASE_DIR + '/' + utility.add_name(
    IMAGE_NAME.split("/")[-1], "", extension="bin")
SEG_SAVE_NAME = RESEARCH_BASE_DIR + '/' + utility.add_name(
    IMAGE_NAME.split("/")[-1], "_userInput", extension="bin")
# Constant
CHANGE_DIVIED = "Image/example/temp.jpg"

# Init Global Data for classify segmentation
totalClass = [[]]
nowIndex = 0
eraseMode = False
eraseList = []
load_value = utility.load_result(SEG_FILE_NAME)
if len(load_value) == 5:
    [divided_class, class_number, class_total, class_border, _] = load_value
Example #8
0
def getStyleChangedImage(inputFile,
                         preferenceImages,
                         od_model,
                         baseLight=[255, 255, 255],
                         changeLight=[178, 220, 240]):
    '''
	입력 Color는 BGR ( [178, 220, 240] 은 주황불빛 )
	preferenceImages 가 4장만 되어도 충분함.
	'''
    if len(preferenceImages) <= 2:
        preferenceImages = preferenceImages + preferenceImages
    print(preferenceImages)
    inputBaseFile, preferenceBaseFile = utility.file_basify(
        inputFile, preferenceImages)

    now = time.time()
    detection_model = pspnet_50_ADE_20K()
    outputFile = utility.get_add_dir(inputFile, "temp")

    # Object Detect & Segmentation
    [coord, str_tag, number_tag, score, rect_files, additional_infor,
     n_color] = getODandSegment(inputBaseFile, od_model)

    (imgHeight, imgWidth, _) = utility.read_image(inputFile).shape
    if imgWidth > destSize[0] and imgHeight > destSize[1]:
        ratio = (destSize[0] / imgWidth, destSize[1] / imgHeight)
    else:
        ratio = (1, 1)
    print("Loading Finished")

    temp = time.time()
    print("Loading Time : ", temp - now)

    # Wall Detection with input image.
    wall_divided = segmentation.detect_wall_floor(inputFile, detection_model)
    wall_divided = utility.resize_2darr(wall_divided, ratio=ratio)
    wall_total, wall_number = matrix_processing.divided_class_into_class_total(
        wall_divided)
    print("Wall Divided.")

    # Get preference image`s data.
    preferWallColor = []
    preferFloorColor = []
    selectedPreferenceImages = []
    [files, domColors, wallColors, floorColors] = utility.load_result(
        config.RESEARCH_BASE_FILE
    )  # Each files` dom color, wall color, floor color will be saved.
    baseNameFiles = [os.path.basename(files[f]) for f in range(len(files))]

    print("Wall Color start.")
    indx = list(range(0, len(preferenceBaseFile)))
    random.shuffle(indx)
    # Select 2 color of above to preferWallColor and preferFloorColor
    for i in range(MAX_WALL_IMAGE):
        ind = indx[i]
        preferImage = preferenceBaseFile[ind]
        loadIndex = baseNameFiles.index(os.path.basename(
            preferImage))  # We do only compare with base name.
        preferWallColor.append(wallColors[loadIndex])
        preferFloorColor.append(floorColors[loadIndex])
        selectedPreferenceImages.append(files[loadIndex])
    print("Wall Colored Selected.")

    # Change wall & floor
    wfColorChangeImage = []
    for i in range(MAX_WALL_IMAGE):
        wfOutputFile = changeWallFloor(inputFile,
                                       outputFile,
                                       wall_divided,
                                       wall_total,
                                       wall_number,
                                       i,
                                       preferWallColor,
                                       preferFloorColor,
                                       ratio=ratio)
        wfColorChangeImage.append(wfOutputFile)
    print("Wall Color Changed")

    temp = time.time()
    print("Wall Coloring Time : ", temp - now)

    # Change Object ( Table and Chair )
    partChangedFiles = []
    procs = []
    recommandFurnitureList = []
    changeFurnitureLocation = []
    changeFurnitureColor = []

    for i in range(MAX_WALL_IMAGE):
        for j in range(MAX_PART_CHANGE_IMAGE):
            # 넘겨줄 인자를 저장하고, Thread를 실행시켜서 속도 향상.
            argvFile = utility.add_name(
                config.SUBPROCESS_ARGV,
                "_" + str(MAX_PART_CHANGE_IMAGE * i + j))
            utility.save_result([
                selectedPreferenceImages, wfColorChangeImage, outputFile,
                str_tag, coord, rect_files, i, j, ratio
            ], argvFile)

            # Subprocess need to calculate with given ratio.
            proc = subprocess.Popen(
                ['python', 'getPartChangedImage.py', argvFile],
                shell=True,
                stdin=subprocess.PIPE,
                stdout=subprocess.PIPE,
                encoding="cp949")
            procs.append(proc)

    for i in range(len(procs)):
        out = procs[i].communicate()[0]
        out = str(out).split("\n")
        tout = []
        for i in range(len(out)):
            if len(out[i]) > 0:
                tout.append(out[i])
        [changed_log, recommand_furniture] = utility.load_result(tout[-1])
        partChangedFiles.append(tout[-2])
        recommandFurnitureList.append(recommand_furniture)
        for i in range(len(changed_log)):
            changeFurnitureLocation.append(changed_log[i][0])
            changeFurnitureColor.append(changed_log[i][1])

    print("Part Changed Finished")
    # Add some plant.
    # partChangedFiles = print() # Image number will not be changed.

    temp = time.time()
    print("Part Changing Time : ", temp - now)

    lightList = []
    # Change Light
    for i in range(MAX_OUT_IMAGE):
        print("Now Proceed : ", i)
        files = utility.add_name(partChangedFiles[i], "_lighter")
        if random.randint(1, MAX_OUT_IMAGE) > 4:
            changed_file = styler.get_light_change(partChangedFiles[i],
                                                   baseLight, changeLight)
            lightList.append(changeLight)
        else:
            changed_file = styler.get_light_change(partChangedFiles[i],
                                                   baseLight, baseLight)
            lightList.append(baseLight)
        utility.save_image(changed_file, files)
        partChangedFiles[i] = files
    # partChangedFiles 가 결국 바뀐 파일들
    temp = time.time()
    print("Total Time : ", temp - now)
    changeLog = makeChangeInfor(preferWallColor, preferFloorColor, [preferenceImages[indx[0]], preferenceImages[indx[1]]], partChangedFiles, lightList, changeFurnitureLocation, changeFurnitureColor, \
     recommandFurnitureList, [])

    resultDictionary = utility.save_log_dictionary(inputFile, partChangedFiles,
                                                   changeLog)
    utility.logging(str(resultDictionary))
    with open(FILE_OUTQUEUE, 'a') as f:
        f.write(str(resultDictionary) + "\n")
Example #9
0
def getStyleChangedImage_past(inputFile, preferenceImages, tempdata="temp"):
    '''
	inputFile에 대한 preferenceImages 를 출력. 
	print 함수로 각 변환한 사진의 이름을 출력하고, 마지막에 몇 장을 줄것인지 출력한다.
	1. Object Detect 결과로 나온 가구들을 Segmentation 화 한다.
	2. 사용자가 좋아한다고 고른 인테리어의 가구 + 사용자가 좋아할것 같은 단독 가구의 색 / 재질 / Segment 를 가져온다.
	3. 원래의 인테리어의 가구들에 적절하게 배치한다.
		3-1. 원래의 인테리어 가구의 재질과 색을 변경한다. ( 모든 sofa, chair 에 대해서 ) -> 40%
		3-2. 원래의 인테리어 가구를 사용자가 좋아할만한 가구로 변경한다. ( 모든 sofa, chair에 대해서 color filter 적용한걸로 ) -> 40%
		3-3. 원래의 인테리어에서 색상 filter만 입혀준다. ( 위의 0.2 부분 )
	'''
    if "\\" in inputFile:
        dirs = inputFile.split("\\")
        inputFile = ""
        for d in dirs[:-1]:
            inputFile += d + "/"
        inputFile += dirs[-1]
    outputFile = utility.get_add_dir(inputFile, tempdata)
    # fav_furniture_list = "Image/InteriorImage/test_furniture/sofa"
    # fav_furniture_list = utility.get_filenames(fav_furniture_list)
    # 기존 Data 출력.
    base_name = inputFile.split("/")[-1].split("Z")[-1]
    researched_files = utility.get_only_jpg_files(
        "C:/workspace/IOU-Backend/util/IOU-ML/Image/InteriorImage/test")
    checked_file = ""
    for rf in researched_files:
        if base_name in rf:
            checked_file = rf

    [coord, str_tag, number_tag, score, rect_files, additional_infor,
     n_color] = utility.get_od_data(checked_file)
    '''
	segment_data = []
	for f in rect_files:
		segment_data.append(utility.get_segment_data(f))
	fav_furniture_seg_data = []
	for f in fav_furniture_list:
		fav_furniture_seg_data.append(utility.get_segment_data(f))
	'''
    returnImageList = []
    for i in range(MAX_OUT_IMAGE):
        now_index = random.randint(0, len(preferenceImages) - 1)
        saveOutputFile = utility.add_name(outputFile, "_" + str(i))
        if i < MAX_OUT_IMAGE * 0.2:
            original_image = utility.read_image(inputFile)
            decrese_ratio = (1.0, 1.0)
            if original_image.shape[0] * original_image.shape[1] > 1200 * 960:
                decrese_ratio = (0.3, 0.3)
            changed_image = styler.set_color_with_image(
                inputFile, preferenceImages[now_index], mask_map=None)
            utility.save_image(changed_image, saveOutputFile)
        elif i < MAX_OUT_IMAGE * 1.0:
            original_image = utility.read_image(inputFile)
            # 특정 크기 이상이면 decrease ratio를 조절하여 1/3으로..
            decrese_ratio = (1.0, 1.0)
            if original_image.shape[0] * original_image.shape[1] > 1200 * 960:
                decrese_ratio = (0.3, 0.3)
                original_image = cv2.resize(original_image,
                                            None,
                                            fx=decrese_ratio[0],
                                            fy=decrese_ratio[1],
                                            interpolation=cv2.INTER_AREA)
            for i in range(len(str_tag)):
                if (str_tag[i] == "sofa" or str_tag[i] == "chair"):
                    styled_furniture = styler.set_color_with_image(
                        "C:/workspace/IOU-Backend/util/IOU-ML/" +
                        rect_files[i], preferenceImages[now_index], None,
                        decrese_ratio)
                    original_image = image_processing.add_up_image_to(original_image, styled_furniture, \
                     int(coord[i][0] * decrese_ratio[0]), int(coord[i][1] * decrese_ratio[0]), int(coord[i][2] * decrese_ratio[0]), int(coord[i][3] * decrese_ratio[0]))
            utility.save_image(original_image, saveOutputFile)
        else:
            original_image = utility.read_image(inputFile)
            for i in range(len(str_tag)):
                if (str_tag[i] == "sofa" or str_tag[i] == "chair"):
                    stylized_image = styler.set_style(
                        "C:/workspace/IOU-Backend/util/IOU-ML/" +
                        rect_files[i], preferenceImages[now_index])
                    stylized_image = np.array((stylized_image * 255)[0],
                                              np.uint8)
                    styled_furniture = cv2.cvtColor(stylized_image,
                                                    cv2.COLOR_BGR2RGB)
                    original_image = image_processing.add_up_image_to(
                        original_image, styled_furniture, int(coord[i][0]),
                        int(coord[i][1]), int(coord[i][2]), int(coord[i][3]))
            utility.save_image(original_image, saveOutputFile)
        returnImageList.append(saveOutputFile)
    returnImageList.append(MAX_OUT_IMAGE)
    return returnImageList
Example #10
0
def objectDetect(inputFile, outputFile):
    '''
	입력받은 inputFile의 가구를 ObjectDetection한 결과를 outputFile에 저장한다. json 형태로 저장한다.
	현재는 bin file로만 입출력이 가능.
	폴더를 입력하면 outputFile은 무시됨.
	'''
    if "." not in inputFile:
        # File is directory
        files = utility.get_filenames(inputFile)
        for f in files:
            if "." not in f:
                continue

            coord, str_tag, number_tag, score = objectDetector.inference(
                detection_model, f)
            # Save file name make.
            save_file_name = utility.add_name(f, "_od", extension="bin")
            dirs = save_file_name.split("/")
            save_image_name = ""
            for d in dirs[0:-1]:
                save_image_name += d + "/"
            save_image_name += f.split("/")[-1].split(".")[0] + "/"
            utility.make_dir(save_image_name)
            rect_files = []

            additional_infor = []
            for i in range(len(str_tag)):
                additional_infor.append(-1)
                rect_image = image_processing.get_rect_image(
                    f, int(coord[i][0]), int(coord[i][1]), int(coord[i][2]),
                    int(coord[i][3]))
                rect_image_name = save_image_name + f.split("/")[-1]
                rect_image_name = utility.add_name(rect_image_name,
                                                   "_" + str(i))
                rect_files.append(rect_image_name)
                utility.save_image(rect_image, rect_image_name)
            utility.save_result([
                coord, str_tag, number_tag, score, rect_files, additional_infor
            ], save_file_name)

    else:
        coord, str_tag, number_tag, score = objectDetector.inference(
            detection_model, inputFile)
        # Save file name make.
        save_file_name = utility.add_name(inputFile, "_od", extension="bin")
        dirs = save_file_name.split("/")
        save_image_name = ""
        for d in dirs[0:-1]:
            save_image_name += d + "/"
        save_image_name += inputFile.split("/")[-1].split(".")[0] + "/"
        utility.make_dir(save_image_name)
        rect_files = []
        additional_infor = []
        for i in range(len(str_tag)):
            additional_infor.append(-1)
            rect_image = image_processing.get_rect_image(
                inputFile, int(coord[i][0]), int(coord[i][1]),
                int(coord[i][2]), int(coord[i][3]))
            rect_image_name = save_image_name + inputFile.split("/")[-1]
            rect_image_name = utility.add_name(rect_image_name, "_" + str(i))
            rect_files.append(rect_image_name)
            utility.save_image(rect_image, rect_image_name)
        utility.save_result(
            [coord, str_tag, number_tag, score, rect_files, additional_infor],
            outputFile)
Example #11
0
def styleTransfer(inputFile,
                  inputDataFile,
                  destFile,
                  inpaintingRandomValue,
                  ratio=(1.0, 1.0)):
    '''
	입력받은 inputFile의 색과 질감을 destFile의 색과 질감으로 임의로 변형해준다. 
	'''
    if utility.is_exist(inputDataFile):
        loadData = utility.load_result(inputDataFile)
        if len(loadData) == 5:
            # Newer Version of segmentation.
            [divided_class, class_number, class_total, _,
             largest_mask] = loadData
        else:
            [divided_class, class_number, class_total, _] = loadData
            largest_mask = None
        class_count = []
        for ct in class_total:
            class_count.append(len(ct))
    else:
        divided_class, class_number, class_total, _, class_count, _, class_color, _, _, _ = \
        segmentation.get_divided_class(inputFile)

    # Init Variables. - TODO : Change this part with largest mask.
    # largest_mask, _, _, (width, height) = segmentation.get_segmented_image(inputFile)
    # class_color = image_processing.get_class_color(utility.read_image(inputFile), class_total, class_count)
    img = utility.read_image(inputFile)
    (height, width, _) = img.shape

    file_extension = "." + inputFile.split(".")[1]
    file_base_name = inputFile.split(".")[0]

    resized_class_total = utility.changed_coords2d(class_total, ratio=ratio)
    # 중복 제거
    temp_class_total = resized_class_total
    resized_class_total = []
    for tc in temp_class_total:
        if tc not in resized_class_total:
            resized_class_total.append(tc)

    input_sample = [
        resized_class_total[i][0] for i in range(len(resized_class_total))
    ]
    if len(input_sample) < MAX_CHANGE_COLOR:
        input_sample *= int(MAX_CHANGE_COLOR // len(input_sample)) + 1
    dest_color = image_processing.get_dominant_color(destFile, clusters=8)

    next_file_name = file_base_name + "_" + str(0) + file_extension
    now_input_sample = random.sample(input_sample, MAX_CHANGE_COLOR)
    now_dest_color = random.sample(dest_color, MAX_CHANGE_COLOR)
    part_change_image = utility.read_image(inputFile)
    part_change_image = utility.resize_image(part_change_image, ratio=ratio)
    randomValue = inpaintingRandomValue

    if randomValue < -1:
        # Image Inpainting
        masking_coord = []
        for ct in resized_class_total:
            masking_coord += ct
        tempFile = utility.add_name(next_file_name, "_temp")
        tempFile = config.RESEARCH_BASE_DIR + "/temp/" + tempFile.split(
            "/")[-1]

        utility.logging("Image Inpainting Starting." + str(randomValue))
        utility.save_image(
            utility.make_whitemask_image(part_change_image, masking_coord),
            tempFile)
        change_image = image_processing.inpainting(part_change_image, tempFile)
        part_change_image = image_processing.add_up_image(
            part_change_image, change_image, masking_coord, width, height)
        now_dest_color = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
    else:
        utility.logging("Image Inpainting Do not proceed. : " +
                        str(randomValue))
        # If not earse, recoloring.
        for j in range(MAX_CHANGE_COLOR):
            change_image = styler.change_dest_color(inputFile, next_file_name, now_dest_color[j], divided_class, resized_class_total,\
             [now_input_sample[j]], save_flag=False, ratio=ratio)
            part_change_image = image_processing.add_up_image(
                part_change_image, change_image,
                resized_class_total[input_sample.index(now_input_sample[j])],
                width, height)
    return part_change_image, now_dest_color