def predizioni(imgpath): utility.test(imgpath, model, pose_name) utility.test_classificatore(imgpath, gnb, pose_name) utility.test_classificatore(imgpath, classifierKNN, pose_name) utility.test_classificatore(imgpath, extra_clf, pose_name) utility.test_classificatore(imgpath, rfl, pose_name) utility.test_classificatore(imgpath, svclassifier, pose_name)
def main(): user_args = get_args() class_labels, train_data, test_data, valid_data = utility.load_img(user_args.data_dir) model = utility.load_pretrained_model(user_args.arch, user_args.hidden_units) criterion = nn.NLLLoss() optimizer = optim.Adam(model.classifier.parameters(), lr=user_args.learning_rate) utility.train(model, user_args.learning_rate, criterion, train_data, valid_data, user_args.epochs, user_args.gpu) utility.test(model, test_data, user_args.gpu) model.to('cpu') # Save Checkpoint for predection utility.save_checkpoint({ 'arch': user_args.arch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'hidden_units': user_args.hidden_units, 'class_labels': class_labels }, user_args.save_dir) print('Saved checkpoint!')
criterion = nn.MSELoss() optimizer_rnn = torch.optim.Adam(rnn.parameters()) optimizer_gru = torch.optim.Adam(gru.parameters()) optimizer_lstm = torch.optim.Adam(lstm.parameters()) print('Training started at:', time_start) while (model_selector_rnn.keep_training or model_selector_gru.keep_training or model_selector_lstm.keep_training): if model_selector_rnn: rnn_loss.append([ train(x_tr, y_tr, batch_size, optimizer_rnn, criterion, rnn, False), validate(x_va, y_va, batch_size, criterion, rnn, False), test(x_te, y_te, batch_size, criterion, rnn, False) ]) rnn_time = str(datetime.datetime.now() - time_start) model_selector_rnn.update(rnn_loss[-1][1], n_epochs) if model_selector_gru: gru_loss.append([ train(x_tr, y_tr, batch_size, optimizer_gru, criterion, gru, False), validate(x_va, y_va, batch_size, criterion, gru, False), test(x_te, y_te, batch_size, criterion, gru, False) ]) gru_time = str(datetime.datetime.now() - time_start) model_selector_rnn.update(gru_loss[-1][1], n_epochs)
import utility as u u.greet() u.test('for testing')
# -*- coding: utf-8 -*- """ Created on Fri Oct 30 03:46:34 2020 @author: Yann """ import renanet import numpy as np import graph import utility rena = renanet.NeuralNet(400,40,10) X,C = utility.chargerFichiersManuscrits(r'/home/yann/Desktop/bourdinyrichrobi/data_chamilo/Data/DigitTrain_%d.mat') X_test,C_test = utility.chargerFichiersManuscrits(r'/home/yann/Desktop/bourdinyrichrobi/data_chamilo/Data/DigitTest_%d.mat') #rena.load("ch.npy") rena.learn(X,C) utility.test(rena,X_test,C_test,mode='max')
""" import renanet import numpy as np import graph import utility rena = renanet.NeuralNet(2, 1) # X = np.array([[0,0.2],[1.72,0.32],[0.98,1.26],[-2,1],[-0.68,2.58], # [-1.76,-0.74],[1.02,-1.52],[-0.34,-2.76],[0,-1],[-3.06,-0.32]]) # C = np.array([[1],[1],[1],[1],[1],[0],[0],[0],[0],[0]]) X = utility.lectureMatData( r'D:\Yann\Desktop\bourdinyrichrobi\data_chamilo\DataSimulation\DataTrain_2Classes_Perceptron.mat', nomColonne='data') C = utility.lectureMatData( r'D:\Yann\Desktop\bourdinyrichrobi\data_chamilo\DataSimulation\DataTrain_2Classes_Perceptron.mat', nomColonne='c') X_test = utility.lectureMatData( r'D:\Yann\Desktop\bourdinyrichrobi\data_chamilo\DataSimulation\DataTest_2Classes_Perceptron.mat', nomColonne='dataTest') C_test = utility.lectureMatData( r'D:\Yann\Desktop\bourdinyrichrobi\data_chamilo\DataSimulation\DataTest_2Classes_Perceptron.mat', nomColonne='cTest') rena.learn(X, C) utility.show(rena, X_test, C_test, utility.test(rena, X_test, C_test)) # X,C = utility.chargerFichiersManuscrits(r'D:\Yann\Desktop\bourdinyrichrobi\data_chamilo\Data\DigitTrain_%d.mat')
import utility import shopping.shopping_cart from shopping.more_shopping.import_demo import printer from shopping.more_shopping.import_demo import printer2 as imported_printer if __name__ == "__main__": print(utility) print(utility.test("Hello")) print(shopping.shopping_cart.buy("Jacket")) print(printer("Hello from import demo!")) print((imported_printer("Hello from imported printer!")))
c.append(1) X.append(x) C.append(c) X = np.array(X) C = np.array(C) return X, C def rente(net, X, C): mise_par_pari = 1.0 compte = 0.0 for i in range(len(X)): compte -= mise_par_pari y = 0 if net(X[i]) < 0.5 else 1 if (C[i] == y): cote = X[i][-2] if y == 0 else X[i][-1] compte += cote * mise_par_pari return compte #rena.load("ch.npy") X, C = readData('2017.csv') _X, _C = readData('2018.csv') X, C = np.concatenate([X, _X]), np.concatenate([C, _C]) _X, _C = readData('2019.csv') X, C = np.concatenate([X, _X]), np.concatenate([C, _C]) rena.learn(X, C) X_test, C_test = readData('2020.csv') utility.test(rena, X_test, C_test) print("En misant 1€ par pari, on gagne {:.2f}€".format( rente(rena, X_test, C_test)))
lstm_loss.append([train(x_tr, y_tr, batch_size, optimizer_lstm, criterion, lstm, args.cuda), validate(x_va, y_va, batch_size, criterion, lstm, args.cuda), test(x_te, y_te, batch_size, criterion, lstm, args.cuda)]) lstm_time = str(datetime.datetime.now()-time_start) model_selector_lstm.update(lstm_loss[-1][1], n_epochs) n_epochs += 1 # s1 = pandas.Series([n_epochs, rnn_loss[-1][0], rnn_loss[-1][1], # rnn_loss[-1][2], rnn_time, i]) # s2 = pandas.Series([n_epochs, gru_loss[-1][0], gru_loss[-1][1], # gru_loss[-1][2], gru_time, i]) s3 = pandas.Series([n_epochs, lstm_loss[-1][0], lstm_loss[-1][1], lstm_loss[-1][2], lstm_time, i])
args.add_argument('--save_dir', dest="save_dir", action="store", default="./checkpoint.pth", help='save a trained model to this directory') args.add_argument('--learning_rate', dest="learning_rate", action="store", default=0.01, help='learning rate') args.add_argument('--epochs', dest="epochs", action="store", type=int, default=10, help='epochs') args.add_argument('--arch', dest="arch", action="store", default="vgg19", type=str, help='select a network architecture') args.add_argument('--hidden_units', dest="hidden_units", action="store", type=int, default=1024, help='hidden nodes') args = args.parse_args() data_dir = args.data_dir save_dir = args.save_dir lr = args.learning_rate arch = args.arch hidden_units= args.hidden_units gpu = args.gpu epochs = args.epochs checkpoint = args.checkpoint_path import json with open('cat_to_name.json', 'r') as f: flower_to_name = json.load(f) flower_species=len(flower_to_name) image_datasets, dataloaders = u.loader(data_dir) model = u.network(arch, gpu, hidden_units) criterion, optimizer = u.optimizing(model, lr) # Let's train model = u.train(model, './ex_model.pth', epochs, optimizer, dataloaders, criterion, gpu) # Let's test u.test(dataloaders, model, criterion, gpu) u.saver(arch, image_datasets, path, model, lr)