def scale_data(train_data, test_data): Z_train, y_train = zip(*train_data) scale = Scaler() scale.fit(Z_train) transform = compose(prepend_x0, scale.transform) scaledX_train = transform(Z_train) scaled_train = list(zip(scaledX_train, y_train)) Z_test, y_test = zip(*test_data) scaledX_test = transform(Z_test) scaled_test = list(zip(scaledX_test, y_test)) return scaled_train, scaled_test
def _common(self, Z, y): scale = Scaler(Z) transform = compose(prepend_x0, Scaler.normalize) X = transform(scale) data = zip(X, y) h_theta0 = [0.] * len(X[0]) coeff = compose(scale.denormalize, get(0), lin_reg(J, gradJ, h_theta0, it_max=2000)) h_thetad = coeff(data) return h_thetad
import glm import metrics from utility import Scaler from ml_util import train_test_split from out_utils import plot_cost, plot_errors # Get the data input = np.loadtxt('./data/Folds.csv', delimiter=',', skiprows=1) Z = np.array(list(pluck(list(range(0, len(input[0])-1)), input))) y = np.array(list(pluck(len(input[0])-1, input))) data = zip(Z, y) # Split into a train set and test set train_data, test_data = train_test_split(data, 0.33) # Scale the training data scale = Scaler() Z_train, y_train = zip(*train_data) scale.fit(Z_train) X_train = scale.transform(Z_train) scaledtrain_data = list(zip(X_train, y_train)) # Scale the testing data using the same scaling parameters # used for the training data Z_test, y_test = zip(*test_data) X_test = scale.transform(Z_test) print('****Minibatch Gradient Descent****') print('\n--Training--\n') hyperparam = {'eta': 0.3, 'epochs': 300, 'minibatches': 1, 'adaptive': 0.99}
Z, q = csv_reader('./data/iris.csv', ['SL', 'SW', 'PL', 'PW'], 'Type') # Get Sepal Length and Petal Length features Zp = list(pluck([0, 2], Z)) # Get only the Iris Setosa (0) and Iris Versicolour (1) classes datap = [[f, o] for f, o in zip(Zp, q) if o != 2.0] Xp, yp = zip(*datap) y = list(yp) Xpp = [list(e) for e in Xp] print(Xpp) print(y) # Split set into training and testing data train_data, test_data = train_test_split(zip(Xpp, y), 0.33) # Scale the data X_train, y_train = zip(*train_data) scale = Scaler() scale.fit(X_train) transform = compose(prepend_x0, scale.transform) scaledX_train = transform(X_train) scaled_train = zip(scaledX_train, y_train) # Fit the training data h_theta0 = [1., 1., 1.] print('****Gradient Descent****\n') print('--Training--\n') h_thetaf, cost = glm.fit(logr.logistic_log_likelihood, logr.grad_logistic, h_theta0, scaled_train, eta=0.03, it_max=500, gf='gd')
from tabulate import tabulate from utility import csv_reader, Scaler, prepend_x0 import metrics import linear_regression as lr import glm from ml_util import train_test_split import numpy as np from numpy.linalg import lstsq # Get the data Z, y = csv_reader('./data/Folds_small.csv', ['AT', 'V', 'AP', 'RH'], 'PE') data = zip(Z, y) # Split into a train set and test set train_data, test_data = train_test_split(data, 0.33) # Scale the training data scale = Scaler() Z_train, y_train = zip(*train_data) scale.fit(Z_train) transform = compose(prepend_x0, scale.transform) X_train = transform(Z_train) scaledtrain_data = zip(X_train, y_train) # Scale the testing data using the same scaling parameters # used for the training data Z_test, y_test = zip(*test_data) X_test = transform(Z_test) h_theta0 = [0., 0., 0., 0., 0.] print('****Gradient Descent****') h_thetaf, cost = glm.fit(lr.J, lr.gradJ, h_theta0,
# Get the iris data set # SL: sepal length, SW: Sepal Width, PL: Petal Length, PW: Petal Width # 0: Iris Setosa 1: Iris Versicolour 2: Iris Virginica Z, q = csv_reader('./data/iris.csv', ['SL', 'SW', 'PL', 'PW'], 'Type') t = list(zip(Z, q)) random.shuffle(t) W, u = list(zip(*t)) yencoded = encode_labels(np.array(u), 3) train_data, test_data = train_test_split(zip(W, yencoded), 0.33) # Scale data Z_train, y_train = zip(*train_data) y_train = np.array(y_train) scale = Scaler() scale.fit(Z_train) scaledX_train = scale.transform(Z_train) Z_test, y_test = zip(*test_data) y_test = np.array(y_test) scaledX_test = scale.transform(Z_test) hyperparam = {'eta': 0.5, 'epochs': 1000, 'minibatches': 4, 'adaptive': 0.98} weightsf, cost = glm.fit(lr.SMC, lr.gradSMC, hyperparam, zip(scaledX_train, y_train))
from utility import Scaler, prepend_x0 from out_utils import logistic_table import metrics data = [(0.7,48000,1),(1.9,48000,0),(2.5,60000,1),(4.2,63000,0),(6,76000,0),(6.5,69000,0),(7.5,76000,0),(8.1,88000,0),(8.7,83000,1),(10,83000,1),(0.8,43000,0),(1.8,60000,0),(10,79000,1),(6.1,76000,0),(1.4,50000,0),(9.1,92000,0),(5.8,75000,0),(5.2,69000,0),(1,56000,0),(6,67000,0),(4.9,74000,0),(6.4,63000,1),(6.2,82000,0),(3.3,58000,0),(9.3,90000,1),(5.5,57000,1),(9.1,102000,0),(2.4,54000,0),(8.2,65000,1),(5.3,82000,0),(9.8,107000,0),(1.8,64000,0),(0.6,46000,1),(0.8,48000,0),(8.6,84000,1),(0.6,45000,0),(0.5,30000,1),(7.3,89000,0),(2.5,48000,1),(5.6,76000,0),(7.4,77000,0),(2.7,56000,0),(0.7,48000,0),(1.2,42000,0),(0.2,32000,1),(4.7,56000,1),(2.8,44000,1),(7.6,78000,0),(1.1,63000,0),(8,79000,1),(2.7,56000,0),(6,52000,1),(4.6,56000,0),(2.5,51000,0),(5.7,71000,0),(2.9,65000,0),(1.1,33000,1),(3,62000,0),(4,71000,0),(2.4,61000,0),(7.5,75000,0),(9.7,81000,1),(3.2,62000,0),(7.9,88000,0),(4.7,44000,1),(2.5,55000,0),(1.6,41000,0),(6.7,64000,1),(6.9,66000,1),(7.9,78000,1),(8.1,102000,0),(5.3,48000,1),(8.5,66000,1),(0.2,56000,0),(6,69000,0),(7.5,77000,0),(8,86000,0),(4.4,68000,0),(4.9,75000,0),(1.5,60000,0),(2.2,50000,0),(3.4,49000,1),(4.2,70000,0),(7.7,98000,0),(8.2,85000,0),(5.4,88000,0),(0.1,46000,0),(1.5,37000,0),(6.3,86000,0),(3.7,57000,0),(8.4,85000,0),(2,42000,0),(5.8,69000,1),(2.7,64000,0),(3.1,63000,0),(1.9,48000,0),(10,72000,1),(0.2,45000,0),(8.6,95000,0),(1.5,64000,0),(9.8,95000,0),(5.3,65000,0),(7.5,80000,0),(9.9,91000,0),(9.7,50000,1),(2.8,68000,0),(3.6,58000,0),(3.9,74000,0),(4.4,76000,0),(2.5,49000,0),(7.2,81000,0),(5.2,60000,1),(2.4,62000,0),(8.9,94000,0),(2.4,63000,0),(6.8,69000,1),(6.5,77000,0),(7,86000,0),(9.4,94000,0),(7.8,72000,1),(0.2,53000,0),(10,97000,0),(5.5,65000,0),(7.7,71000,1),(8.1,66000,1),(9.8,91000,0),(8,84000,0),(2.7,55000,0),(2.8,62000,0),(9.4,79000,0),(2.5,57000,0),(7.4,70000,1),(2.1,47000,0),(5.3,62000,1),(6.3,79000,0),(6.8,58000,1),(5.7,80000,0),(2.2,61000,0),(4.8,62000,0),(3.7,64000,0),(4.1,85000,0),(2.3,51000,0),(3.5,58000,0),(0.9,43000,0),(0.9,54000,0),(4.5,74000,0),(6.5,55000,1),(4.1,41000,1),(7.1,73000,0),(1.1,66000,0),(9.1,81000,1),(8,69000,1),(7.3,72000,1),(3.3,50000,0),(3.9,58000,0),(2.6,49000,0),(1.6,78000,0),(0.7,56000,0),(2.1,36000,1),(7.5,90000,0),(4.8,59000,1),(8.9,95000,0),(6.2,72000,0),(6.3,63000,0),(9.1,100000,0),(7.3,61000,1),(5.6,74000,0),(0.5,66000,0),(1.1,59000,0),(5.1,61000,0),(6.2,70000,0),(6.6,56000,1),(6.3,76000,0),(6.5,78000,0),(5.1,59000,0),(9.5,74000,1),(4.5,64000,0),(2,54000,0),(1,52000,0),(4,69000,0),(6.5,76000,0),(3,60000,0),(4.5,63000,0),(7.8,70000,0),(3.9,60000,1),(0.8,51000,0),(4.2,78000,0),(1.1,54000,0),(6.2,60000,0),(2.9,59000,0),(2.1,52000,0),(8.2,87000,0),(4.8,73000,0),(2.2,42000,1),(9.1,98000,0),(6.5,84000,0),(6.9,73000,0),(5.1,72000,0),(9.1,69000,1),(9.8,79000,1),] data = map(list, data) # change tuples to lists # each element is [experience, salary] Z = [row[:2] for row in data] # each element is paid_account y = [row[2] for row in data] massaged_data = zip(Z, y) train_data, test_data = train_test_split(massaged_data, 0.33) Z_train, y_train = zip(*train_data) scale = Scaler() scale.fit(Z_train) transform = compose(prepend_x0, scale.transform) scaledX_train = transform(Z_train) scaled_train = zip(scaledX_train, y_train) Z_test, y_test = zip(*test_data) scaledX_test = transform(Z_test) scaled_test = zip(scaledX_test, y_test) print('****Gradient Descent****\n') h_theta0 = [1., 1., 1.] h_thetaf, cost = glm.fit(logr.logistic_log_likelihood, logr.grad_logistic, h_theta0, scaled_train, eta=0.1, it_max=1000,